COPRINO

Antioxidant, Anti-photoageing, Anti-inflammatory

- COPRINO POWDER
 (Powder, Food Grade)
- COPRINO POWDER C
 (Powder, Cosmetic Grade)
- COPRINO EXTRACT-PO.5
 (Water-soluble powder, Food Grade)
- COPRINO EXTRACT-PCO.5
 (Water-soluble powder, Cosmetic Grade)

ORYZA OIL&FAT CHEMICAL CO., LTD.
Ver. 1.1M
1. Introduction

Coprino, or its scientific name *Coprinus comatus*, is a variety of edible white mushroom. *Coprinus comatus* is widely grown and distributed in temperate regions in Europe and North America starting from spring to autumn. Coprino, as illustrated below, is white in colour with cylindrical body growing from the ground covered with umbrella-shaped cap. The natural beauty of Coprino does not last long as it will turn black and dissolve itself hours after being picked or depositing spores. In Italy and other European countries, the mushroom *Coprinus comatus* has been regarded and consumed as high quality food ingredient due to limited availability. Meanwhile, its delicious taste is similar to the taste of marshmallow and is believed to taste and blend well with oil.
In recent years, ergothioneine, a naturally-occurring amino acid with strong antioxidant activity, has fascinated the attention of the industry. Ergothioneine cannot be synthesized in the human cells but can be acquired from the diet. It is commonly found in bacterial, plants and animals. Upon absorption, ergothioneine is concentrated in the erythrocytes, lens of eyes and in the skin. The antioxidant properties of ergothioneine have been reported to be stronger than L-cysteine and ascorbic acid. Consequently, it is widely used in topical formulation for cosmetic effect. In vitro, ergothioneine has been demonstrated to inhibit tyrosinase and elastase activity while other studies documented the anti-inflammatory and anti-stress effect of ergothioneine.

Professor Toshihiko Osawa, honourable professor of Nagoya University, Assoc. Professor Yumi Itoh from Hokkaido University of Education and others evaluated the content of ergothioneine in a variety of food. It is clearly shown that Coprino is the richest source of ergothioneine and upon comparison with other fungi, content of ergothioneine is 5x higher in Coprino (Fig. 2).
In addition, Coprino can be regarded as tasty health food due to the presence of glutamic acid (>1%) and guanylic acid. Glutamic acid is the main contributor to the good taste of kelp.

The commercial cultivation of Coprinus comatus is limited by its predisposition to disintegrate into inky mess. Nevertheless, with the joint collaboration and cooperation from The Institute of Healthcare System Inc., Iwade Mycology Research Institute, Oryza Oil & Fat Chemical Co., Ltd., Nagoya University, Hokkaido University of Education and Meijo University have managed to commercialize large-scale cultivation and extraction of *Coprinus comatus*, Coprino with functional effect as an excellent anti-ageing and skin lightening agent.

The raw material of Coprino is grown and cultivated in private facility rich in natural fertilizers for maintenance of consistency and production of safe and excellent quality product. Coprino is produced as new generation functional food and cosmetics ingredients which benefits health.
Table of Contents

1. Introduction .. pg. 1
2. Physiological Antioxidant pg. 5
3. Anti-photo-ageing .. pg. 6
4. Skin Whitening .. pg. 9
5. Anti-inflammatory Effect pg. 10
6. Reference Journals .. pg. 10
7. Stability Profile ... pg. 11
8. Nutritional Profile .. pg. 12
9. Safety Profile ... pg. 12
10. Recommended Dosage ... pg. 13
11. Application Examples .. pg. 13
12. Packaging ... pg. 13
13. Storage .. pg. 14
14. Expression ... pg. 14
Product Standard .. pg. 15
2. Physiological Antioxidant

In vitro and cell studies documented that ergothioneine as a superoxide scavenger. K. Obayashi 2) et al., has reported that ergothioneine trapped superoxide radicals in a concentration dependent manner at very low range of concentration. In addition, ergothioneine has been reported to prevent the occurrence of lipid peroxidation as compared to other relatively strong and popular antioxidants such as cysteine.

![Graph showing scavenging effect of ergothioneine on superoxide radicals.]

Fig. 3. The scavenging effect of ergothioneine on superoxide radicals.

![Bar graph showing effect of various antioxidants on lipid peroxidation.]

Fig. 4. The effect of various antioxidants on lipid peroxidation.

Furthermore hydrogen peroxide induced oxidative stress increased cells and mitochondrial DNA damage which consequently reduce cells’ survival rate. Meanwhile BD Paul 3) et al., reported that addition of ergothioneine significantly revived cells from oxidative damage. In the same studies, it was demonstrated that lipid peroxidation was prevented in cell line treated with ergothioineine. Interference of RNAi depletes
ergothioneine transporter, increasing cells susceptibility to lipid peroxidation clarifying the physiologic cytoprotection of ergothioneine. As a result, this sulphur-containing amino acid, ergothioneine plays an important role as physiologic antioxidant.

Fig. 5. The effect of ergothioneine on hydrogen peroxide-induced cell damage

Fig. 6. The effect of ergothioneine on RNAi-mediated cell depletion of ergothioneine and lipid peroxidation.

3. Anti-photo-ageing

Photo-ageing refers to damages of the skin, the epidermis and the dermis, by intense and chronic UV exposure resulting in the appearance of fine lines, wrinkles and age spots.

The effect of Coprino on UV-induced photoageing on fibroblasts cells was examined. Normal human diploid fibroblasts (TIG-108, derived from female aged 40 of Japanese origin) was pre-treated 24 hours prior to the addition of test samples followed by UV irradiation. Photoageing was induced with UV-B irradiation at 755mJ/cm².
14.4 mW/cm². Next, MTT cytotoxic assay was carried out to determine intensity of cell damage while PCR was carried out to evaluate the expression of matrix metalloproteinases (MMP-1) and mRNA expression of TNF-α respectively.

As illustrated in Fig. 7, UV-B irradiation decreased cell proliferation, similarly, growth of fibroblasts is inhibited. However, in cells treated with Coprino Extract and ergothioneine, recovery of cells proliferation is observed with increasing concentration. Particularly, significant recovery of cells proliferation observed in cells treated with Coprino Extract 300 µg/mL and ergothioneine 100 µg/mL. Consequently, it is suggestive that Coprino Extract with ergothioneine is preventive against photoageing.

In addition, upon irradiation of UV-B, MMP-1 (matrix metalloproteinases), the marker of fibroblast collagenase and TNF-α, the inflammatory marker, were activated to initiate the cleavage of collagen and induce inflammation respectively. In the experiment, cells treated with Coprino Extract and ergothioneine demonstrated a down-regulation on the expression of MMP-1 and TNF-α which once again suggested the prevention of photoageing by Coprino Extract.

The above findings confirm the protective effect of Coprino Extract against UV-induced photoageing, preventing the breakdown of collagen and inflammation of the skin.
Relative value : β-actin as correction factor for gene expression

** : p < 0.01, N=4, average ± S.E.

MMP-1 expression was enhanced by UV irradiation.
MMP-1 expression was suppressed by Coprino extract
MMP-1 expression was suppressed by ergothioneine.

Fig. 8. The effect of Coprino Extract and ergothioneine on MMP-1 mRNA expression

TNF-α expression was enhanced by UV irradiation.
TNF-α expression was suppressed by Coprino extract.
TNF-α expression was suppressed by ergothioneine.

Fig. 9. The effect of Coprino Extract and ergothioneine on TNF-α mRNA expression
4. Skin Whitening

Skin pigmentation is a result of excessive production of melanin leaving skin with freckles and spots. The synthesis of melanin is catalyzed by the enzyme tyrosinase, hence inhibition of tyrosinase is believed to prevent skin pigmentation. In vitro experiments showed that Coprino Extract inhibit melanin synthesis and tyrosinase activity respective. Therefore, it is suggestive that Coprino Extract posses skin whitening properties.

(1) Inhibition of Melanin Production

In collaboration with Meijo University, the effect of Coprino Extract on melanin synthesis was examined in vitro using B16 melanoma cells. Results revealed that melanin synthesis was significantly suppressed in samples treated with Coprino Extract.

Fig. 10. The Effect of Coprino Extract on the inhibition of melanin synthesis

(2) Inhibition of Tyrosinase Activity

Further experiment was prompted to investigate the skin whitening effect of Coprino. In vitro experiment showed that Coprino Extract and its bioactive component, ergothioneine, demonstrated concentration-dependent inhibition on tyrosinase activity.

Fig. 11. The effect of Coprino Extract and ergothioneine on the inhibition of tyrosinase activity.
5. Anti-inflammatory Effect

Further studies conducted with Nagoya University and Hokkaido University of Education confirm the anti-inflammatory effect of Coprino Extract in mouse adipocytes (3T3-L1) using interleukin-6 (IL-6) as inflammatory marker.

In the experiment, TNF-α was added to the culture medium after mouse preadipocytes, the undifferentiated adipocytes were induced to differentiate. Concentration of IL-6, the inflammatory marker, increased with the addition of TNF-α. However, in samples treated with Coprino® Extract, concentration of IL-6 significantly reduced in spite of the addition of TNF-α. Consequently, it is suggestive that Coprino Extract containing ergothioneine is inhibitory on the production of interleukin-6 (IL-6), thus Coprino Extract is anti-inflammatory.

![Graph showing the effect of Coprino Extract on the inhibition of IL-6 production](image)

Fig. 12. The effect of Coprino Extract on the inhibition of IL-6 production

6. Reference Journals

3) BD Paul and SH Snyder, Cell Death Differ., 17, 1134-1140, 2010
7. Stability Profile

(1) Heat Stability

As illustrated in Fig. 13, there is no significant decrease in the content of ergothioneine in Coprino powder and Coprino Extract at normal temperature for sterilization.

Therefore, Coprino powder and Coprino Extract are ingredients of high stability at normal food processing temperature.

![Fig. 13. The heat stability of Coprino Extract](image)

(2) pH Stability

As illustrated in Fig. 14, the content of ergothioneine in Coprino Extract solution remained stable at pH ranges from 3 to 9 while significant reduction is observed at pH 10.

Therefore, Coprino Powder and Coprino Extract are recommended to be used at stable pH zone between pH 3 to pH 9.

![Fig. 14 The pH stability of Coprino Extract solution](image)
8. Nutritional Profile

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount per 100g</th>
<th>Analytical Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coprino Powder</td>
<td>Coprino Extract-P0.5</td>
</tr>
<tr>
<td>Energy</td>
<td>177 kcal</td>
<td>347.6 kcal</td>
</tr>
<tr>
<td>Protein</td>
<td>23.3 g</td>
<td>15.3 g</td>
</tr>
<tr>
<td>Fat</td>
<td>2.7 g</td>
<td>0.2 g</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>41.3 g</td>
<td>70.6 g</td>
</tr>
<tr>
<td>Natrium</td>
<td>mg</td>
<td>64 mg</td>
</tr>
<tr>
<td>Sodium</td>
<td>g</td>
<td>0.1 g</td>
</tr>
<tr>
<td>Moisture</td>
<td>5.7 g</td>
<td>3.2 g</td>
</tr>
<tr>
<td>Ash</td>
<td>9.0 g</td>
<td>10.7 g</td>
</tr>
<tr>
<td>Dietary fiber</td>
<td>18.0 g</td>
<td>1.1 g</td>
</tr>
</tbody>
</table>

*1 Energy expression standard (Ministry of Health and Welfare’s announcement No. 176)
Conversion factor: Protein 4, fat 9, sugar 4; dietary fiber 2
*2 Nitrogen, protein conversion factor: 6.25
*3 Carbohydrate expression standard (Ministry of Health and Welfare’s announcement No. 176)

Coprino Powder
Test trustee: Japan Food Research Laboratories / Date of analysis: December 25, 2009
Test No.: 09029156001-01

Coprino Extract-P0.5
Test trustee: SRL, Inc / Date of analysis: September 21, 2010
Test No.: 201009070021

9. Safety Profile

(1) Residual Agricultural Chemicals
Agricultural chemical inspection was conducted on Coprino as an requirement for importation of mushroom. Results showed that all tested items below the allowed reference range.

(2) Acute Toxicity (LD_{50})
Acute Toxicity test was conducted according to the Guidelines for Single-Dose Toxicity Tests for Pharmaceutical Products where Coprino Extract 2000 mg/kg was orally given to starved mice (male & female ddy, 5 weeks old, weight ~30 g) for 14 days. No abnormalities and fatal event observed at 2000 mg/kg. No abnormalities of organs observed under macroscopic examination upon autopsy. Thus, LD_{50} of Coprino Extract is deduced to be >2000 mg/kg.

(3) Mutagenicity
Ames test was conducted to evaluate the mutagenicity of Coprino Extract (without binder) using Salmonella typhimurium TA98 and TA100 in S9mix. As a result, no mutagenicity observed at concentration range of 19.5 – 5000 μg/plate.
10. Recommended Daily Dosage

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Functional Effect</th>
<th>Recommended dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coprino Powder</td>
<td>Antioxidant</td>
<td>20-50 mg/day</td>
</tr>
<tr>
<td>Coprino Extract –P0.5</td>
<td>Anti-photoageing, Skin Whitening, Anti-inflammatory</td>
<td>10-30 mg/day</td>
</tr>
</tbody>
</table>

11. Applications

<table>
<thead>
<tr>
<th>Applications</th>
<th>Claims</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foods</td>
<td>Nutritional Food, Diet Food, Beauty Food</td>
<td>1) Antioxidant, 2) Anti-photoageing, 3) Skin Whitening, 4) Anti-inflammatory</td>
</tr>
<tr>
<td>Cosmetics</td>
<td>Beauty</td>
<td>Sunscreen, toner, lotion, body gel, shampoo, conditioner and bath salts, etc.</td>
</tr>
</tbody>
</table>

12. Packaging

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Packaging</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coprino Powder (powder, Food grade)</td>
<td>Interior Packaging: Aluminium bag</td>
<td>1kg</td>
</tr>
<tr>
<td></td>
<td>Exterior Packaging: Cardboard</td>
<td>5kg</td>
</tr>
<tr>
<td>Coprino Extract-P0.5 (Water soluble powder, food grade)</td>
<td>Interior Packaging: Aluminium bag</td>
<td>1kg</td>
</tr>
<tr>
<td></td>
<td>Exterior Packaging: Cardboard</td>
<td>5kg</td>
</tr>
<tr>
<td>Coprino Powder –C (powder, cosmetics grade)</td>
<td>Interior Packaging: Aluminium bag</td>
<td>1kg</td>
</tr>
<tr>
<td></td>
<td>Exterior Packaging: Cardboard</td>
<td>5kg</td>
</tr>
<tr>
<td>Coprino Extract-PC0.5 (water soluble powder, cosmetics grade)</td>
<td>Interior Packaging: Cubic polyethylene container</td>
<td>1kg</td>
</tr>
<tr>
<td></td>
<td>Exterior Packaging: Cardboard</td>
<td></td>
</tr>
</tbody>
</table>
13. Storage

It is recommended to store in a cool, dry, dark place and avoid heat and humidity. In particular, dessicant bag is recommended for storage of Coprino Extract-P0.5 & -PC0.5 as once open it is highly hygroscopic.

14. Expression

<Food>
 Coprino Powder
 Expression: dried mushroom powder

 Coprino Extract-P0.5
 Expression: dried processed mushroom powder

<Cosmetic>
 Coprino Powder –C
 INCI: Coprinus Comatus (Mushroom) Powder

 Coprino Extract-PC0.5
 INCI: Coprinus Comatus (Mushroom) Extract (and) Dextrin

 Coprino Extract-LC
 INCI: Water (and) Butylene Glycol (and) Coprinus Comatus (Mushroom) Extract
This product is powder of dried *Coprinus Comatus*. It guarantees minimum of 0.3 % ergothioneine.

1. **Appearance**
 Light brown to brown powder. Light unique smell.

2. **Ergothioneine**
 Min. 0.3 % (HPLC)

3. **Loss on Drying**
 Max. 10.0 % (Analysis for Hygienic Chemists, 1g, 105°C, 2h)

4. **Purity Test**
 (1) Heavy Metals (as Pb) Max. 20 ppm (Sodium Sulfide Colorimetric Method)
 (2) Arsenic (as As₂O₃) Max. 2 ppm (Standard Methods of Analysis in Food Safety Regulation, The Third Method, Apparatus B)

5. **Standard Plate Counts**
 Max. 3 ×10³ cfu/g (Analysis for Hygienic Chemists)

6. **Moulds and Yeasts**
 Max. 1 ×10² cfu/g (Analysis for Hygienic Chemists)

7. **Coliforms**
 Negative (Analysis for Hygienic Chemists)

8. **Composition**
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Coprinus Comatus</td>
<td>100 %</td>
</tr>
</tbody>
</table>
This product is extracted from Coprinus Comatus with water. It guarantees minimum of 0.5 % ergothioneine. This product is water-soluble.

1. Appearance Light yellow to brown powder. Light unique smell.

2. Ergothioneine Min. 0.5 % (HPLC)

3. Loss on Drying Max. 10.0 % (Analysis for Hygienic Chemists, 1g, 105°C, 2h)

4. Purity Test
 (1) Heavy Metals (as Pb) Max. 20 ppm (Sodium Sulfide Colorimetric Method)
 (2) Arsenic (as As₂O₃) Max. 2 ppm (Standard Methods of Analysis in Food Safety Regulation, The Third Method, Apparatus B)

5. Standard Plate Counts Max. 3 ×10³ cfu/g (Analysis for Hygienic Chemists)

6. Moulds and Yeasts Max. 1 ×10² cfu/g (Analysis for Hygienic Chemists)

7. Coliforms Negative (Analysis for Hygienic Chemists)

8. Composition

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coprinus Comatus Extract</td>
<td>70 %</td>
</tr>
<tr>
<td>Dextrin</td>
<td>30 %</td>
</tr>
</tbody>
</table>
This product is powder of dried *Coprinus Comatus*. It guarantees minimum of 0.3 % ergothioneine.

1. **Appearance**
 Light brown to brown powder. Light unique smell.

2. **Ergothioneine**
 Min. 0.3 % (HPLC)

3. **Loss on Drying**
 Max. 10.0 % (1g, 105℃, 2h)

4. **Purity Test**
 (1) **Heavy Metals (as Pb)**
 Max. 20 ppm (The Second method of The Japanese Standards of Quasi-Drug Ingredients)

 (2) **Arsenic (as As₂O₃)**
 Max. 2 ppm (The Third method of The Japanese Standards of Quasi-Drug Ingredients)

5. **Standard Plate Counts**
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

6. **Moulds and Yeasts**
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

7. **Coliforms**
 Negative (Analysis for Hygienic Chemists)

8. **Composition**
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coprinus Comatus (Mushroom) Powder</td>
<td>100 %</td>
</tr>
</tbody>
</table>

This product is extracted from *Coprinus Comatus* with water. It guarantees minimum of 0.5 % ergothioneine. This product is water-soluble.

1. **Appearance**
 Light yellow to brown powder. Light unique smell.

2. **Ergothioneine**
 Min. 0.5 % (HPLC)

3. **Loss on Drying**
 Max. 10.0 % (1g, 105 °C, 2h)

4. **Purity Test**
 (1) **Heavy Metals (as Pb)**
 Max. 20 ppm (The Second method of The Japanese Standards of Quasi-Drug Ingredients)

 (2) **Arsenic (as As₂O₃)**
 Max. 2 ppm (The Third method of The Japanese Standards of Quasi-Drug Ingredients)

5. **Standard Plate Counts**
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

6. **Moulds and Yeasts**
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

7. **Coliforms**
 Negative (Analysis for Hygienic Chemists)

8. **Composition**

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coprinus Comatus (Mushroom) Extract</td>
<td>70 %</td>
</tr>
<tr>
<td>Dextrin</td>
<td>30 %</td>
</tr>
</tbody>
</table>
This product is extracted from *Coprinus Comatus* with water and is dissolved in aqueous 1,3-butyleneglycol.

1. **Appearance**
 Light brown or brown liquid. Light unique smell.

2. **Certification Test**
 Polyphenols
 Dissolve 30 μl of this product in 3.5 ml water. Add 0.2 ml Folin-Denis reagent into the solution followed by 0.4 ml saturated Na$_2$CO$_3$.
 The solution will turn into blue color.

3. **Purity Test**
 (1) **Heavy Metals (as Pb)**
 Max. 20 ppm
 (The Second method of The Japanese Standards of Quasi-Drug Ingredients)

 (2) **Arsenic (as As$_2$O$_3$)**
 Max. 2 ppm
 (The Third method of The Japanese Standards of Quasi-Drug Ingredients)

4. **Standard Plate Counts**
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

5. **Moulds and Yeasts**
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

6. **Coliforms**
 Negative
 (Analysis for Hygienic Chemists)

7. **Composition**
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>69 %</td>
</tr>
<tr>
<td>Butylene Glycol</td>
<td>30 %</td>
</tr>
<tr>
<td>Coprinus Comatus (Mushroom) Extract</td>
<td>1 %</td>
</tr>
</tbody>
</table>
ORYZA OIL & FAT CHEMICAL CO., LTD. striving for the development of the new functional food materials to promote health and general well-being.

From product planning to OEM - For any additional information or assistance, please contact:

ORYZA OIL & FAT CHEMICAL CO., LTD.
No.1, Numata Kitagata-cho, Ichinomiya-city, Aichi-pref.,
493-8001 JAPAN
TEL: +81 (0) 586 86 5141
FAX: +81 (0) 586 86 6191
URL/http : //www.oryza.co.jp/
E-mail: info@oryza.co.jp

Tokyo Office
Daitokyo Build. 5F, 1-24-10, Suda-cho, Kanda, Chiyoda-ku, Tokyo, 101-0041 Japan
TEL: +81 (0) 3 5209 9150
FAX: +81 (0) 3 5209 9151
E-mail: Tokyo@oryza.co.jp

*The unapproved copy of this catalogue and appropriation are forbidden except for the exception on the Copyright Act.
*The contents of this catalogue may be changed without prior notice.

Established Date: January 20, 2011
Revised Date: August 30, 2011
ORYZA OIL & FAT CHEMICAL CO., LTD.