oryza

株式会社オリザ

ORIZA OIL & FAT CHEMICAL CO., LTD.

ver. 1.0HS
1. Introduction

Lingonberry (*Vaccinium vitis-idaea*) is a native plant of the forests of Labrador and Northern Eurasia. The fruits of Lingonberry are nutritionally rich in vitamin C and other phytontrients. Lingonberries are collected in the wild in Finland and eaten raw, which preserves most of their nutrients. Besides, lingonberries can be incorporated into juices, jam, syrup and other form of processed food.

With respect to the functional effect of lingonberry, it has been renowned for its rich phytochemical contents such as arbutin, resveratrol, anthocyanidin and procyanidin. Research studies on the functional effects of lingonberry are increasing in recent years. With great honor, Oryza Oil & Fat Chemical Co., Ltd. together with Norbiox Ltd. successfully developed LINGONBERRY EXTRACT standardized with arbutin featuring on healthy skin whitening. LINGONBERRY EXTRACT is extracted from the seed of wild lingonberry fruits using organic solvent. Therefore, LINGONBERRY EXTRACT is free from agricultural chemicals with excellent safety profile. In addition, research studies from our R&D showed that LINGONBERRY EXTRACT inhibits melanin production in guinea pigs allowed it to be incorporated into functional beauty food and cosmetic applications for skin whitening.

Fig. 1 Wild lingonberry (above); Lingonberry on sale in a market (below)
2. Bioactive compounds of Lingonberry

In addition to the arbutin content, Lingonberry is loaded with phenolic compounds resulting in strong antioxidant activity. (Fig. 2) Others phytochemicals such as lignan has been reported as well.

Fig. 2. Bioactive compounds of Lingonberry

3. Studies References on the functional effect of Lingonberry & Arbutin

With respect to the pharmaceutical uses of Lingonberry, it has been reported to prevent cancer $^{1-3}$ and counteract urinary tract infection 4. Nevertheless, it has been identified that Lingonberry exhibits anti-inflammatory effect in a study on UV-induced mice cells where activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) production was inhibited 5. In similar report, the mechanism on cytotoxicity of cytokine release was mentioned. Therefore, there is possibility that Lingonberry may suppress skin inflammation and flare.

References:

On the other hand, the popular whitening component – arbutin has been reported to inhibit melanin production (Table 1) $^{6-8}$. Similarly, studies on the anti-inflammatory effect of Lingonberry has been quoted accordingly.9,10

Table 1. Related studies on the inhibition of melanin production by Arbutin

<table>
<thead>
<tr>
<th>Description</th>
<th>Effective Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibition of Tyrosinase</td>
<td></td>
</tr>
<tr>
<td>Mushroom derived</td>
<td>IC$_{50}$: 162 µg/mL or 210 µM</td>
</tr>
<tr>
<td>B16 Melanoma</td>
<td>Effective</td>
</tr>
<tr>
<td>Inhibition of melanin production</td>
<td></td>
</tr>
<tr>
<td>B16 Melanoma</td>
<td>(1) at 50 µM, 71% inhibition</td>
</tr>
<tr>
<td></td>
<td>(2) IC$_{50}$: 6 mM</td>
</tr>
<tr>
<td>Human Melanoma</td>
<td>0.5-4 mM</td>
</tr>
<tr>
<td>Tyrosinase expression</td>
<td></td>
</tr>
<tr>
<td>B16 Melanoma</td>
<td>At 2 mM, 60% inhibition</td>
</tr>
</tbody>
</table>

References:
6) Sugimoto K. et al.,Syntheses of α-arbutin-α-glycosides and their inhibitory effects on human

4. The Whitening Effect of LINGONBERRY EXTRACT

(1) Inhibition of Tyrosinase

The effect of LINGONBERRY EXTRACT on tyrosinase activity was experimented and compared with β-arbutin. Mushroom derived tyrosinase was used. Results showed that LINGONBERRY EXTRACT-P0.5 demonstrated concentration dependent inhibition similar to that of β-arbutin.

Fig. 3. The Effect of LINGONBERRY EXTRACT-P0.5 & Arbutin on Tyrosinase Activity
[Method] 40mM of phosphate buffer (pH6.8) 1360 µL, 0.4 mg/mL L-DOPA (Acros Co.) 500 µL was mixed with 40 µL of sample previously dissolved in DMSO, mushroom derived tyrosinase (Sigma) 100 µL (300 units/mL) was added and left for 5 min at room temperature for reaction to complete. Results were determined by light absorbance at 490nm.

(2) Inhibition of Melanin Production
The effect of LINGONBERRY EXTRACT on melanin production was experimented and compared with β-arbutin. Results showed that LINGONBERRY EXTRACT-P0.5 demonstrated concentration dependent inhibition on melanin production.

![Graph](image)

Fig. 4 The effect of LINGONBERRY EXTRACT-P0.5 & Arbutin on Melanin Production

[Method] B16 melanoma cells were cultured in a 24-well plate of MEM medium (5×10^4 cells/mL) suspension containing 2mM theophylline, 10% FCS, penicillin (100 units/mL) & streptomycin (100 µg/mL). Sample solution (55 µL) was added to the
culture medium and continued with 3 days incubation. Upon removal of culture medium, phosphate buffer saline (PBS, 300 µL) was added and crushed by ultrasonication. The crushed cells were transferred to a 96-well plate for absorbance measurement at wavelength 415 nm using microplate reader.

(2) Prevention of UV induced hyperpigmentation

Study was prompted to examine and compare the effect of LINGONBERRY EXTRACT-P0.5 and arbutin on UV induced skin hyperpigmentation. Skin transparency value, L* value was measured as pigmentation index. Results showed that LINGONBERRY EXTRACT–P0.5 exhibited skin lightening effect as the L* value was higher compared with control on day-4 and day-10 (Fig. 5). On the other hand, arbutin showed reduced impact on skin lightening effect. At the end of experiment, photos of changes on UV induced area was taken (Fig. 6), thus indicating the skin lightening effect of LINGONBERRY EXTRACT-P0.5 and arbutin compared with control. In conclusion, LINGONBERRY EXTRACT demonstrated skin lightening effect on UV-induced skin. Upon comparison with Arbutin, LINGONBERRY EXTRACT-P0.5 significantly enhances the recovery from UV induced hyperpigmentation.

Fig. 5 The effect of LINGONBERRY EXTRACT-P0.5 and arbutin on UV-induced hyperpigmentation
□ L: Decrease in L* value indicates intensity of darkness.
Brown guinea pigs were divided into 3 groups, namely, control, LINGONBERRY EXTRACT-P0.5 & Arbutin respectively. Samples (0.1% concentration) were given orally to guinea pigs 7 days prior to UV light induction. UV-B induction (using Solar simulator by Ushio Inc.) was introduced for 3 days at 2000 mJ/cm². Feeding of samples continued during UV induction period until end of experimental period (15 days). Skin transparency, L* value was measured using spectro-color difference meter (Nippon Denshoku Industries Co., Ltd) before and on day 4, 6, 8, 10, 13 & 15 after UV-induction.

(4) The skin lightening effect of topical arbutin on UV-induced hyperpigmentation on hairless mice

In this experiment, 1% arbutin in petroleum ointment was topically applied to hairless mouse to examine its effect on UV-induced hyperpigmentation. The L value of non-UV irradiated group (normal) was lower compared to control group. On the other hand, L value returned to normal level with the application of arbutin. “a” value which represents redness did not change while “b” value which represents yellowish has obviously increased (Table 2, Fig. 7).

Next, upon examination of mRNA expression in the skin, the expressions of
tyrosinase, tyrosinase related protein, melanocortin receptor 1, COX-2 mRNA and endothelin A receptor were increased by UV irradiation in control group. Expression of mRNA was suppressed in group treated with topical application of arbutin 1%. Tyrosinase and tyrosinase related protein are responsible for melanin synthesis in melanocytes. The melanocyte stimulating hormone receptor, melanocortin 1 receptor controls the switch from phaeomelanin (yellow) to eumelanin (black). 11) Meanwhile, it has been demonstrated that human keratinocytes produce endothelins, which can be strong mitogens as well as melanogens for human melanocytes. 12) Results revealed that the expression of tyrosinase mRNA was suppressed with inhibitory effect of arbutin molecules on melanin production. In addition, expression of COX-2 (cyclooxygenase-2) was similarly suppressed due to inhibition of UV-induced inflammation by arbutin.

Table 2. Color changes after topical application of arbutin 1%

<table>
<thead>
<tr>
<th>Conc. (%)</th>
<th>L</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>51.86±0.52</td>
<td>9.38±0.68</td>
<td>0.75±0.81</td>
</tr>
<tr>
<td>Control</td>
<td>49.01±1.01</td>
<td>8.63±0.67</td>
<td>0.28±0.44</td>
</tr>
<tr>
<td>Arbutin</td>
<td>52.17±1.11</td>
<td>8.68±0.43</td>
<td>1.89±0.64</td>
</tr>
</tbody>
</table>

Mean±SD (n=5)

Fig. 7 UV-induced area (individual mouse no.2)
Table 3. Expression of mRNA of UV-induced skin area

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Control</th>
<th>Arbutin 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrosinase</td>
<td>0.26±0.06</td>
<td>1.00±0.14</td>
<td>0.27±0.07</td>
</tr>
<tr>
<td>Tyrosinase related protein</td>
<td>0.28±0.08</td>
<td>1.00±0.16</td>
<td>0.32±0.10</td>
</tr>
<tr>
<td>Melanocortin receptor 1</td>
<td>0.16±0.04</td>
<td>1.00±0.23</td>
<td>0.25±0.07</td>
</tr>
<tr>
<td>COX-2</td>
<td>0.51±0.16</td>
<td>1.00±0.18</td>
<td>0.23±0.05</td>
</tr>
<tr>
<td>Neurotrophin-3</td>
<td>1.10±0.05</td>
<td>1.00±0.01</td>
<td>0.95±0.02</td>
</tr>
<tr>
<td>Endothelin 1</td>
<td>1.10±0.02</td>
<td>1.00±0.01</td>
<td>1.27±0.05</td>
</tr>
<tr>
<td>Endothelin A receptor</td>
<td>0.23±0.04</td>
<td>1.00±0.21</td>
<td>0.23±0.01</td>
</tr>
<tr>
<td>Endothelin B receptor†</td>
<td>1.24±0.13</td>
<td>1.00±0.06</td>
<td>0.66±0.07</td>
</tr>
</tbody>
</table>

† Endothelin B receptor is a strain for dissociation curve, for reference purpose.

[Method] Hairless mouse (Hos; HRM2, male, 5-week old) was preliminary breaded for 12 days. Skin on the centre of mouse mid dorsal area was irradiated with UVB (160 mJ) by Solar Simulator. 0.1 mL of ointment was immediately applied topically to the irradiated site. These procedures were repeated for 7 days, on day 8-15, dosage of UVB irradiation was increased to 320 mJ. On day 16, L, a & b values were determined using spectro-color difference meter. The skin of irradiated site was then removed to determine the expression of mRNA according to the common procedures for extraction of RNA, RT-PCR etc.
5. Stability of LINGONBERRY EXTRACT

(1) Heat Stability

The heat stability of LINGONBERRY EXTRACT was conducted where the content of arbutin was the measurement standard. The high sugar nature in LINGONBERRY EXTRACT resulting in caramel formation at high temperature, however, the content of arbutin remained unchanged as illustrated below.

![Fig. 8 Heat Stability of LINGONBERRY EXTRACT-P0.5](image)

(2) pH Stability

The pH stability of LINGONBERRY EXTRACT was examined where 0.2% solution of LINGONBERRY EXTRACT-P0.5 was stored at different pH value at room temperature in dark for 1 week. The arbutin content of LINGONBERRY EXTRACT-P0.5 was measured. Results showed that pink color solution disappeared when pH >5, arbutin content of LINGONBERRY EXTRACT-P0.5 is stable between pH3 - 8. Arbutin is not stable under alkaline environment.

![Fig. 9 pH Stability of Ligonberry Extract-P0.5 in aqueous solution](image)
6. Nutritional Value of LINGONBERRY EXTRACT

<table>
<thead>
<tr>
<th>Description</th>
<th>J 1)</th>
<th>PJ 2)</th>
<th>P0.5 3)</th>
<th>Units</th>
<th>Analytical method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>32.8</td>
<td>3.8</td>
<td>3.5</td>
<td>g/100g</td>
<td>Heat-drying at atmospheric pressure</td>
</tr>
<tr>
<td>Protein</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>g/100g</td>
<td>Kjeldahl Method</td>
</tr>
<tr>
<td>Fat</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
<td>g/100g</td>
<td>Acid Degradation</td>
</tr>
<tr>
<td>Ash</td>
<td>1.3</td>
<td>0.5</td>
<td>1.1</td>
<td>g/100g</td>
<td>Direct Incineration</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>64.9</td>
<td>95.4</td>
<td>94.6</td>
<td>g/100g</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>246</td>
<td>383</td>
<td>384</td>
<td>kcal/100g</td>
<td>Modified Atwater Method 7)</td>
</tr>
<tr>
<td>Sodium</td>
<td>Not tested</td>
<td>2</td>
<td>8</td>
<td>Mg/100g</td>
<td>Atomic absorption spectrophotometry</td>
</tr>
</tbody>
</table>

1) Data furnished by Finland manufacturer, 2) Test trustee: SRL, Inc., Date of analysis: April 24, 2008, Test No: 200804110033, 3) Test Trustee: SRL, Inc., Date of analysis: April 23, 2009, Test No: 200904170038, 4) P0.5 suitable usage, 5) Nitrogen, Protein conversion factor: 6.25, 6) Calculation: 100-(water + protein + fat + ash), 7) Energy conversion factor: protein 4, fat 9, sugar 4

7. Safety Profiles

(1) Residual Agricultural Chemicals
LINGONBERRY EXTRACT-P0.5 was tested by analysis centre in Finland with regards to the residual agricultural chemicals. LINGONBERRY EXTRACT-P0.5 is safe and conforms to the standards on 237 items stipulated.

Test Trustee: Customs Laboratory Finland
Date of analysis: September 18, 2008
Test No: 08-04827

(2) Acute toxicity (LD₅₀)
LINGONBERRY EXTRACT-P0.5 (2000mg/kg) was orally given to fasting male ddY mice (aged 5 weeks old) and kept for 14 days. No fatal event observed. Upon autopsy performance, no abnormalities of internal organs observed under macroscopic examination. LD₅₀ of LINGONBERRY EXTRACT-P0.5 is deduced to be >2,000 mg/kg in mice.

(3) Ames Test
Ames Test was conducted to assess the mutagenic potential of LINGONBERRY EXTRACT-P0.5 using the bacterium *S. typhimurium*, TA98 & TA100. Results showed that there is no increase in the number of colonies observed and thus LINGONBERRY
EXTRACT-P0.5 is non-mutagenic.

(4) Resveratrol
Resveratrol extracted from lingonberry fruit is usually less than 0.1%. However, there are products claiming its content of standardized resveratrol >1.0%, hence, it is believed to contain added resveratrol from external sources such as roots of Japanese knotweed (Fallopia Japonica).

8. Recommended dosage
The recommended daily dosage for LINGONBERRY EXTRACT-P0.5 is 50-100mg/day

9. Commercial Applications

<table>
<thead>
<tr>
<th>Category</th>
<th>Application</th>
<th>Claims / Benefits</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>Beauty Supplement</td>
<td>Antioxidant, prevention of skin ailments</td>
<td>Beverage, hard & soft capsules, tablets, candy, chewing gum, gummy, cookies, chocolate etc.</td>
</tr>
<tr>
<td>Cosmetic</td>
<td>Whitening & Beautifying</td>
<td></td>
<td>Cleansing gel, toner, lotion, body gel etc.</td>
</tr>
</tbody>
</table>

10. Packaging

LINGONBERRY EXTRACT-J (concentrated juice, food grade)
25kg Interior packing: Aluminum-coated plastic bag
Exterior packing: Plastic container
1kg Interior packing: Aluminum-coated plastic bag (produced upon request)

LINGONBERRY EXTRACT-PJ (water-soluble concentrated juice powder, food grade)
LINGONBERRY EXTRACT-P0.5 (water-soluble powder, food grade)
5kg Interior packing: Aluminum-coated plastic bag
Exterior packing: Cardboard box

LINGONBERRY EXTRACT-PJC (water-soluble concentrated juice powder, cosmetic grade)
LINGONBERRY EXTRACT-PC0.5 (water-soluble powder, cosmetic grade)
5kg Interior packing: Aluminum-coated plastic bag
Exterior packing: Cardboard box

LINGONBERRY EXTRACT-LC (water-soluble liquid, cosmetic grade)
5kg Interior packing: Cubic polyethylene container
Exterior packing: Cardboard box
11. Storage

LINGONBERRY EXTRACT-J is recommended to be stored and refrigerated below 4°C. Others to be stored in a cool, dry and dark place.

12. Expression

<Food Grade>
LINGONBERRY EXTRACT-J
Expression: Lingonberry Fruit Juice or Vaccinium Vitis-Idaea Fruit Juice

LINGONBERRY EXTRACT-PJ
Expression: Lingonberry Fruit Juice Powder, Vaccinium Vitis-Idaea Fruit Juice powder, or
Lingonberry Fruit Juice or Vaccinium Vitis-Idaea Fruit Juice & Dextrin

LINGONBERRY EXTRACT-P0.5
Expression: Lingonberry Extract Powder, Vaccinium Vitis-Idaea Extract Powder, or
Lingonberry Extract or Vaccinium Vitis–Idaea Extract & Dextrin

<Cosmetics Grade>
LINGONBERRY EXTRACT-PJC
INCI name: Vaccinium vitis-Idaea Fruit Juice, Dextrin

LINGONBERRY EXTRACT-PC0.5
INCI name: Vaccinium Vitis-Idaea Fruit Extract, Dextrin

LINGONBERRY EXTRACT-LC
INCI name: Water, Butylene Glycol, Vaccinium Vitis-Idaea Fruit Juice
PRODUCT STANDARD

PRODUCT NAME

(FOOD)

This product is 7-fold concentrated juice from Lingonberry (*Vaccinium vitis-ideae*) fruits juice.

1. Appearance
 Dark purple liquid with slightly unique smell

2. Purity Test
 (1) Heavy Metals Max. 10 ppm (The Japanese Standards for Food Additives)

 (2) Arsenic Max. 1 ppm (Standard Methods of Analysis in Food Safety Regulation)

3. Standard Plate Counts
 Max. 1×10^3 cfu/g (Analysis for Hygienic Chemists)

4. Moulds and Yeasts
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

5. Coliforms
 Negative (Analysis for Hygienic Chemists)

6. Composition
<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lingonberry concentrated juice</td>
<td>100 %</td>
</tr>
</tbody>
</table>
PRODUCT STANDARD

PRODUCT NAME

This product is powder prepared from juice of Lingonberry (*Vaccinium vitis-ideae*) fruits. The product is water-soluble.

1. Appearance
Pink powder with slightly unique smell

2. Loss on Drying
Max. 10.0 %
(Analysis for Hygienic Chemists, 1g, 105ºC, 2h)

3. Purity Test
(1) Heavy Metals
Max. 10 ppm
(The Japanese Standards for Food Additives)

(2) Arsenic
Max. 1 ppm
(Standard Methods of Analysis in Food Safety Regulation)

4. Standard Plate Counts
Max. 1×10^3 cfu/g
(Analysis for Hygienic Chemists)

5. Moulds and Yeasts
Max. 1×10^2 cfu/g
(Analysis for Hygienic Chemists)

6. Coliforms
Negative
(Analysis for Hygienic Chemists)

7. Composition

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lingonberry juice</td>
<td>50 %</td>
</tr>
<tr>
<td>Dextrin</td>
<td>50 %</td>
</tr>
<tr>
<td>Total</td>
<td>100 %</td>
</tr>
</tbody>
</table>

This product is a component of Lingonberry Juice of 7× concentrated from juice concentrate.
PRODUCT STANDARD

PRODUCT NAME

This product is water-soluble powder extracted and purified from Lingonberry (Vaccinium vitis-ideae) fruits. It guarantees minimum of 0.50% arbutin.

1. Appearance
 Pink powder with slightly unique smell.

2. Arbutin
 Min. 0.50% (HPLC)

3. Loss on Drying
 Max. 10.0 % (Analysis for Hygienic Chemist, 1g, 105 °C,2h)

4. Purity Test
 (1) Heavy Metals
 Max. 20 ppm (The Japanese Standards for Food Additives)
 (2) Arsenic
 Max. 1 ppm (Standard Methods of Analysis in Food Safety Regulation)

5. Standard Plate Counts
 Max. 3×10^3 cfu/g (Analysis for Hygienic Chemists)

6. Moulds and Yeasts
 Max. 1×10^3 cfu/g (Analysis for Hygienic Chemists)

7. Coliforms
 Negative (Analysis for Hygienic Chemists)

8. Composition
<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lingonberry Extract</td>
<td>50 %</td>
</tr>
<tr>
<td>Dextrin</td>
<td>50 %</td>
</tr>
<tr>
<td>Total</td>
<td>100 %</td>
</tr>
</tbody>
</table>
PRODUCT STANDARD

PRODUCT NAME

(COSMETICS)

This product is powder prepared from juice of Lingonberry (*Vaccinium vitis-ideae*) fruits. The product is water-soluble.

1. Appearance
 Pink powder with slightly unique smell.

2. Loss on Drying
 Max. 10.0 % (1g, 105°C, 2h)

3. Purity Test
 (1) Heavy Metals
 Max. 10 ppm (The Second Method)
 (2) Arsenic
 Max. 1 ppm (The Third Method)

4. Standard Plate Counts
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

5. Moulds and Yeasts
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

6. Coliforms
 Negative (Analysis for Hygienic Chemists)

7. Composition

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccinium Vitis-ideae Fruit Juice</td>
<td>50 %</td>
</tr>
<tr>
<td>Dextrin</td>
<td>50 %</td>
</tr>
<tr>
<td>Total</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Ref: The Japanese Standards of Quasi-Drug Ingredients.

Vaccinium Vitis-ideae Fruit Juice contained in the product is 7-fold concentrated lingonberry juice.
PRODUCT STANDARD

PRODUCT NAME

This product is water-soluble powder extracted and purified from Lingonberry (Vaccinium vitis-ideae) fruits. It guarantees minimum of 0.50% arbutin.

1. Appearance
 Pink powder with slightly unique smell.

2. Arbutin
 Min. 0.50% (HPLC)

3. Loss on Drying
 Max. 10.0 % (1g, 105ºC, 2h)

4. Purity Test
 (1) Heavy Metals
 Max. 20 ppm (The Second Method)
 (2) Arsenic
 Max. 1 ppm (The Third Method)

5. Standard Plate Counts
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

6. Moulds and Yeasts
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

7. Composition

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccinium Vitis-ideae Fruit Extract</td>
<td>50 %</td>
</tr>
<tr>
<td>Dextrin</td>
<td>50 %</td>
</tr>
<tr>
<td>Total</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Ref: The Japanese Standards of Quasi-Drug Ingredients.
PRODUCT STANDARD

PRODUCT NAME

(COSMETICS)

This product is water-soluble liquid obtained by dilution of Lingonberry (*Vaccinium vitis-ideae*) fruits with aqueous 1,3-butylen glycol.

1. Appearance
 Red liquid with slight unique smell.

2. Purity Test
 (1) Heavy Metals
 Max. 10 ppm (The Second Method)

 (2) Arsenic
 Max. 1 ppm (The Third Method)

3. Standard Plate Counts
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

4. Moulds and Yeasts
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

5. Coliforms
 Negative (Analysis for Hygienic Chemists)

6. Composition

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>90 %</td>
</tr>
<tr>
<td>Butylene Glycol</td>
<td>9 %</td>
</tr>
<tr>
<td>Vaccinium Vitis-ideae Fruit Juice</td>
<td>1 %</td>
</tr>
<tr>
<td>Total</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Ref: The Japanese Standards of Quasi-Drug Ingredients.

Vaccinium Vitis-ideae Fruit Juice contained in the product is 7-fold concentrated lingonberry juice.
ORYZA OIL & FAT CHEMICAL CO., LTD. striving for the development of the new functional food materials to promote health and general well-being.

From product planning to OEM - For any additional information or assistance, please contact:

ORYZA OIL & FAT CHEMICAL CO., LTD.
Head quarter
No.1, Numata Kitagata-cho, Ichinomiya-city, Aichi-pref., 493-8001 JAPAN
TEL: +81 (0) 586 86 5141
FAX: +81 (0) 586 86 6191
URL/http://www.oryza.co.jp/
E-mail: info@oryza.co.jp

Tokyo Office
Daitokyo Build. 5F, 1-24-10, Suda-cho, Kanda, Chiyoda-ku, Tokyo, 101-0041 Japan
TEL: +81 (0) 3 5209 9150
FAX: +81 (0) 3 5209 9151
E-mail: Tokyo@oryza.co.jp

*The unapproved copy of this catalogue and appropriation are forbidden except for the exception on the Copyright Act.
*The contents of this catalogue may be changed without prior notice.

Established Date: July 16, 2009