GAMMA ORYZANOL

Food and Cosmetic Ingredient

■ GAMMA ORYZANOL
(For Food and Cosmetics)

■ ORYZA GAMMA MILKY
(Emulsion for Food and Cosmetics)
1. Introduction
Rice has been widely cultivated as one of the major food resources and remains as staple food. With the advancement in refining technology, by-products of rice such as rice oil have been produced as edible vegetable oil as well as cosmetic ingredient. Rice play an important role as the only domestically produced resources of oil and fats.

Rice oil is loaded with bioactive compounds such as γ-oryzanol, tocopherols, tocotrienols, sterol etc., which contributed to the excellent stability and functionality of rice bran oil.

Since establishment of the industrial scale manufacturing of γ-oryzanol by Oryza Oil & Fat Chemical Co., Ltd., it has been widely used in food and cosmetic aspects around the world. It is registered as medicine in Japan and South Korea.
2. \(\gamma \)-oryzanol

\(\gamma \)-oryzanol is a naturally occurring component in rice bran and rice germ which consists of a mixture of ferulic acid esters of sterols and triterpene alcohols (Figure 1).

In 1954, Kaneko and Tsuchiya et al.\(^1\) reported that isolated oryzanol demonstrated nutritional effects on animals. There are increasing numbers of reports indicating the benefits, efficacy and safety of \(\gamma \)-oryzanol.

Literature

Figure 1 Chemical structures of major components of \(\gamma \)-oryzanol
3. Functional Effects of γ-oryzanol

3-1. Effect on Central Nervous System and Mental Condition

There are a number of clinical studies reported that γ-oryzanol is beneficial in the treatment of relieving menopausal (climacteric) symptoms (Table 1). Meanwhile, Sasaki et al. ⁵) reported that γ-oryzanol improved the condition of post traumatic dysautonomia from head injuries and no side effects reported at large dosage (Tables 2 and 3).

In addition, combination of γ-oryzanol and plant sterol has been used in the treatment of senile dementia, arteriosclerosis and cerebromalacia. The mechanism of action of γ-oryzanol is believed to be involved in the metabolism of catecholamine in the hypothalamus ⁶).

Other studies demonstrated the anti-ulcer effect of γ-oryzanol in rat with gastric mucosal damage in water immersion restraint stress model ⁷) and in mice gastric mucosal injury model with conditioned emotional stimuli ⁸), the anti-ulcer effect is believed to be involved in the metabolism of catecholamine.

<table>
<thead>
<tr>
<th>Application</th>
<th>Dosage (mg/d)</th>
<th>Duration (day)</th>
<th>Effect</th>
<th>Ref. literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menopause</td>
<td>5-10</td>
<td>10-38</td>
<td>>50% reduction of menopausal index</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>14</td>
<td>76.6% improvement in symptoms</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>7-14</td>
<td>70-90% improvement in dysautonomia</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>4-8 weeks</td>
<td>80% elevation of symptoms & reduce serum lipid peroxide</td>
<td>4</td>
</tr>
<tr>
<td>Dysautonomia</td>
<td>135</td>
<td>21</td>
<td>74% effectiveness</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 2: The effect of γ-oryzanol on the duration of illness of dysautonomia & post trauma from head injury.

<table>
<thead>
<tr>
<th>Duration of illness (years)</th>
<th>Number of cases</th>
<th>Effectiveness</th>
<th>Ineffectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>12</td>
<td>7 (22.6%)</td>
<td>5 (16.1%)</td>
</tr>
<tr>
<td>1-4</td>
<td>14</td>
<td>11 (35.5%)</td>
<td>3 (9.6%)</td>
</tr>
<tr>
<td>4-8</td>
<td>2</td>
<td>2 (6.5%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>8-12</td>
<td>2</td>
<td>2 (6.5%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>12-20</td>
<td>1</td>
<td>1 (3.2%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>23 (74.3%)</td>
<td>8 (25.7%)</td>
</tr>
</tbody>
</table>

Post Trauma from Head Injury

<table>
<thead>
<tr>
<th>Duration of illness (year)</th>
<th>Number of cases</th>
<th>Effectiveness</th>
<th>Ineffectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>5</td>
<td>3 (27.3%)</td>
<td>2 (18.2%)</td>
</tr>
<tr>
<td>1-4</td>
<td>5</td>
<td>3 (36.3%)</td>
<td>1 (9.1%)</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1 (9.1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>8 (72.7%)</td>
<td>3 (27.3%)</td>
</tr>
</tbody>
</table>

Table 3: The effect of γ-oryzanol on gynaecological autonomic nervous system.

<table>
<thead>
<tr>
<th>No.</th>
<th>Middle aged Neuropathy</th>
<th>Menopausal Neuropathy</th>
<th>Hysterectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very Effective (++)</td>
<td>Effective (+)</td>
<td>Mildly effective (+)</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>3 (18.0)</td>
<td>8 (47.0%)</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>5 (27.7)</td>
<td>7 (38.9%)</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4 (80.0%)</td>
<td>1 (20.0%)</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>8 (20.0)</td>
<td>19 (50.0%)</td>
</tr>
</tbody>
</table>
3-2. Antioxidant Effect

The antioxidant effect of γ-oryzanol was well documented and excellent in inhibiting lipid peroxidation. Kanno et al.\(^9\) reported that γ-oryzanol (0.5% ~1%) inhibited thermal oxidative polymerization of soybean oil. The antioxidant effect of γ-oryzanol is contributed by ferulic acid entity, meanwhile, BHT and δ-tocopherol has been revealed to be heat resistant. In addition, Oryza Oil & Fat Chemical Co. Ltd. showed that the antioxidant effect of γ-oryzanol was potentiated with amino acid\(^10\). According to Rodin’s iron method, the induction period of certain peroxide was measured, as illustrated in Figure 2, there was synergistic increased in antioxidant effect of γ-oryzanol and amino acids.

The excellent heat resistance property of γ-oryzanol is highly suitable to be incorporated in heat processed food. Currently in Japan, γ-oryzanol is approved and listed as “antioxidant” under the list of chemical composition of food additives.

![Figure 2: The Antioxidant Effect of γ-oryzanol and in combination with amino acids.](image)
3-3. Alleviation of hyperlipidemia & hypercholesterolemia

Wilson T. A. et al. reported that \(\gamma \)-oryzanol reduced plasma cholesterol in hypercholesterolemic hamsters\(^{11}\). Similarly, Hiramatsu K. et al. reported that \(\gamma \)-oryzanol suppressed the accumulation of cholesterol in arterial endothelium (atheroma) in hypercholesterolemic rabbits\(^{12}\). Clinically, oral intake of rice bran oil\(^{13}\) (containing naturally occurring \(\gamma \)-oryzanol) and \(\gamma \)-oryzanol (prescribed medicine)\(^{14-16}\) has been shown to alleviate hypercholesterolemia and hyperlipidemia (Table 4).

![Graph showing improvement of various skin conditions](image)

Figure 3 Improvement of various skin condition by topical application of \(\gamma \)-oryzanol

Table 4 The effect of \(\gamma \)-oryzanol (500 mg/day) on plasma cholesterol and triglycerides
(Ref. literature no. 26)

<table>
<thead>
<tr>
<th>Treatment Duration (week)</th>
<th>Initial concentration of cholesterol (mg/dL)</th>
<th>(>260)</th>
<th>220-260</th>
<th>(<220)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\gamma)-oryzanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>282±16</td>
<td>239±11</td>
<td>200±19</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>258±33</td>
<td>229±19*</td>
<td>198±23</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>259±24*</td>
<td>231±25</td>
<td>199±17</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>256±39</td>
<td>229±17*</td>
<td>196±32</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>251±24*</td>
<td>227±21*</td>
<td>191±32</td>
</tr>
</tbody>
</table>

Mean±S.D., n=7-21
3-4. Anti-inflammatory effect

It has been reported that cycloartenyl ferulate, a major component of γ-oryzanol, inhibits activation of NFκB by LPS dose-dependently \(^\text{17}\). Furthermore, γ-oryzanol and cycloartenyl ferulate is also reported to strongly inhibit genes expression such as TNFα, IL-1β, COX-2, iNOS which are involved in inflammation. These results suggest that γ-oryzanol is found to be useful for inflammatory disease. Inflammatory bowel diseases such as ulcerative colitis and Crohn's disease have been designated as intractable diseases by the Health, Labour and Welfare Ministry of Japan. Oral administration to dextran sulphate sodium in mice is known to provoke bowel inflammation closely resembling ulcerative colitis. Oral administration or injection of γ-oryzanol is reported to alleviate inflammation dramatically and it is revealed that the inhibitory effect of NFκB activation is involved in this result \(^\text{18}\). These results suggest that γ-oryzanol is useful for relief of symptoms of inflammatory bowel diseases.

3-5. Antiallergenic effect

Allergic reaction occurs in processes as follows: 1) antigen-specific IgE binds to FcεR1 receptor on mast cells, 2) intracellular calcium concentration rises, 3) degranulatory response is raised, and histamine and prostaglandin D2 are released. γ-Óryzanol is reported to inhibit dose-dependently degranulatory response by stimulated by antigen in rat-derived mast cells. It is reported that this effect of γ-oryzanol is stronger than tranilast, a kind of antiallergenic agent offered commercially, and no effect of ferulic acid is observed. Mechanism of this effect is considered that γ-oryzanol captures IgE, prevents it from binding to FcεR1, and attenuates mast cell degradation. \(^\text{19}\). Furthermore, γ-oryzanol is known to inhibit prominently passive cutaneous anaphylaxis reaction caused by IgE topical administration.

<table>
<thead>
<tr>
<th>Treatment Duration (week)</th>
<th>Initial concentration of cholesterol (mg/dL)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>300</td>
<td>300-150</td>
</tr>
<tr>
<td>0</td>
<td>396±97</td>
<td>197±44</td>
</tr>
<tr>
<td>4</td>
<td>308±30</td>
<td>214±80</td>
</tr>
<tr>
<td>8</td>
<td>291±64*</td>
<td>203±80</td>
</tr>
<tr>
<td>12</td>
<td>262±82*</td>
<td>210±99</td>
</tr>
<tr>
<td>16</td>
<td>281±75*</td>
<td>197±75</td>
</tr>
</tbody>
</table>

Mean±S.D., n=4-20
3-6. Topical Effect
(a) Increased skin temperature
Kamimura et al. \(^{20-22}\) reported that topical application of \(\gamma\)-oryzanol increased skin surface temperature (Table 5). In the experiment, hydrophilic ointment of \(\gamma\)-oryzanol was applied to the back of sheared rabbit prior to cold exposure, changes on skin temperature was measured and recorded. In addition, intravenous administration of radioactive phosphorus compound increased skin surface glands (Table 6), \(\gamma\)-oryzanol acted as cold load preventing sudden fall of skin temperature while promoting the recovery of skin temperature. Besides, it was shown that oral administration (human) of \(\gamma\)-oryzanol improved circulation of the skin resulting in increased skin surface temperature.

<table>
<thead>
<tr>
<th>Area</th>
<th>21°C</th>
<th>5°C</th>
<th>0°C</th>
<th>-10°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2% ointment (°C)</td>
<td>35.8</td>
<td>32.2</td>
<td>30.5</td>
<td>27.9</td>
</tr>
<tr>
<td>1% ointment (°C)</td>
<td>35.8</td>
<td>32.1</td>
<td>30.6</td>
<td>27.8</td>
</tr>
<tr>
<td>Contrast area (°C)</td>
<td>35.8</td>
<td>31.3</td>
<td>29.6</td>
<td>26.0</td>
</tr>
</tbody>
</table>

Table 5: Average Skin Temperature after Cold Exposure of applied areas.

<table>
<thead>
<tr>
<th>Rabbit</th>
<th>(P_{32})</th>
<th>2% ointment</th>
<th>1% ointment</th>
<th>Contrast area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2mc</td>
<td>1.08</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.2mc</td>
<td>1.06</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.1mc</td>
<td>1.04</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1mc</td>
<td>1.16</td>
<td>1.19</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>0.1mc</td>
<td>1.10</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.1mc</td>
<td>1.16</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td>1.10</td>
<td>1.09</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Ratio of Topical application of \(\gamma\)-oryzanol to CPM
(b) Skin Whitening & Activation of Sebaceous Gland

Ibata et al.23 examined the effect of γ-oryzanol on tyrosinase and the effect was compared with L-ascorbic acid. Result showed that tyrosinase activity and melanin production was inhibited by γ-oryzanol with a weaker effect compared to L-ascorbic acid. Clinically, intradermal administration of γ-oryzanol 10 mg improved the condition of liver spots24. Originally, γ-oryzanol was reported to absorb UV ray25, meanwhile Ando et al.26 reported that topical application of γ-oryzanol reduced erythema in UV-induced guinea pig model.

On the other hand, study showed that γ-oryzanol was stimulatory on sebaceous gland27. Topical application of γ-oryzanol 1% ointment alleviated the symptoms of dryness in atopic dermatitis and dry skin28. As illustrated in Figure 3 in page 8, topical application of γ-oryzanol aqueous cream 3 times daily for 12 weeks on inflammatory dry skin conditions reduced sebaceous gland secretion while regulating the function of sebaceous gland over long period of time. Hence, γ-oryzanol was potentially beneficial for dry skin condition (Figure 3). Research conducted by Kakuma et al.29 on the effect of topical application on regulation of sebaceous gland reported that slow-acting γ-oryzanol promoted film formation on sebaceous gland and thus preventing dry skin and skin irritations.

In addition, γ-oryzanol has been incorporated as antioxidant in cosmetic applications30.

3-7. Others
γ-oryzanol has been advocated as treatment for relieving menopausal symptoms31.
Summary of functional effects of γ-oryzanol

Brain
- Post-menopausal syndrome,
- Autonomic nerve disturbance,
- Anti-stress

Whole body
- Anti-allergy,
- Anti-inflammation,
- Anti-oxidation,
- Vitamin E-like effects

Stomach
- Anti-ulcer,
- Centrally acting stomach movement

Skin
- Elevation of surface temperature,
- Activation of sebaceous glands,
- Inhibition of melanin formation

Metabolism, Digestion
- Lowering of cholesterol,
- Accumulation of glycogen,
- Centrally acting intestinal movement
- Anti-colon cancer
- Inhibition of IBS

Literature
3) Okuda N. et al., Sanka to Fujinka, 37 (11), 1488-94.
6) Ashida ka Y. et al., Sanka to Fujinka, 43.11 1572-8
15) Saito Y. et al., Yakuri to Tiryo, 8, 2839-2842 (1980).
23) Ibata Y., Fragrance Journal, 8 (6), 92-7 (1980).
31) Watanabe S. et al., Sanfujinka no Jissai, 14, 959-62
4. γ-oryzanol – absorption, distribution and metabolism
Fujiwara et al. 1) reported that plasma concentration of metabolite of γ-oryzanol peaked at 4 to 5 hours post administration, and decreasing rapidly to certain level and remained for 48 hours in rabbit. Meanwhile, 5-10% of metabolites found in the urinary excretion and 17-32% in the feces respectively after 48-hour administration 2).
In terms of distribution, γ-oryzanol was found to be largely distributed in the brain with its metabolite uniformly distributed among organs and largely accumulated in the liver however less in the reproductive organs. Later, study conducted by Noda et al. 4, 5) using rats model reported that plasma concentration of γ-oryzanol peaked at 5 hours after oral administration and 10 hours by subcutaneous administration. However, single dose administration did not reveal a large distribution in the brain, continuous administration may result in 5-10 folds of distribution.

Literature
2) Fujiwara S. et al., Yakushi, 100, 1011-8 (1980).
5) Noda H. et al., Kiso to Rinsho, 9, 1767-76 (1975)
5. Nutritional Profile

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Range</th>
<th>Remark</th>
<th>Analytical Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>0.2g/100g</td>
<td></td>
<td></td>
<td>Heat-drying at atmospheric pressure</td>
</tr>
<tr>
<td>Protein</td>
<td><0.1g</td>
<td></td>
<td>1</td>
<td>Kjeldahl method</td>
</tr>
<tr>
<td>Fat</td>
<td>99.8g/100g</td>
<td></td>
<td></td>
<td>Ethanol extraction method</td>
</tr>
<tr>
<td>Ash</td>
<td>0g/100g</td>
<td></td>
<td></td>
<td>Direct Incineration</td>
</tr>
<tr>
<td>Sugar</td>
<td>0g/100g</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>898kcal/100g</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fiber</td>
<td>Not detected</td>
<td>0.5g/100g</td>
<td>4</td>
<td>Enzymatic</td>
</tr>
<tr>
<td>Sodium</td>
<td>Not detected</td>
<td>0.1mg/100g</td>
<td></td>
<td>Atomic absorption spectrophotometry</td>
</tr>
</tbody>
</table>

Remarks:
1. Nitrogen-Protein conversion factor 6.25
2. Labelling Standard of Nutrition (Ministry of Health and Welfare Notification No. 146, 1996) according to conversion formula:
 100 - (moisture + protein + lipid + ash + dietary fiber)
3. Standard of Energy Expression (Ministry of Health and Welfare Notification No. 146, 1996) according to the conversion factor:
 Protein 4, Fat 9, Sugar 4
4. AOAC method.

Test Trustee: Japan Food Analysis Centre
Date of Test: Dec 14, 1998
Test Report: No. 398110460-001

6. Safety Profile

6-1. Acute Toxicity
Yahara et al. in a study using mouse and rats model reported that oral and intraperitoneal administration of γ-oryzanol 10,000 mg/kg showed no abnormality generally and upon autopsy. Similarly, no abnormalities observed on subcutaneous administration of γ-oryzanol 500 mg/kg.

6-2. Chronic Toxicity
It has been reported that no abnormal finding observed in rats after 6 months continuous oral administration of γ-oryzanol (30-1000 mg/kg)
6-3. Teratogenicity
No fetal teratogenicity observed in mouse with the administration of γ-oryzanol (6 – 600 mg/kg) during pregnancy. 3)

6-4. Carcinogenicity
Oral administration of γ-oryzanol (2000 mg/kg) was given to mouse for 72 weeks and rat for 2 years respectively. No carcinogenicity observed at the above dosage. 4, 5)

6-5. Skin Irritation Test (Patch Test)
Kobayashi T et al. reported that low skin irritation observed in skin patch test using γ-oryzanol 1% ointment. 6)

Literature:
1) Yahara M. et al., Kiso to Rinsho, 7, 2781-85 (1973)
3) Maruoka H. et al., Kiso to Rinsho, 6, 1717-31 (1972).

7. Applications

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>Soft capsules, tablets, hard capsules, etc.</td>
</tr>
<tr>
<td>Cosmetics</td>
<td>Soap, facial wash, shampoo, conditioner, lotion, lotion, foundation, lip balm, lipstick, toothpaste, etc.</td>
</tr>
</tbody>
</table>

8. Packing
GAMMA ORYZANOL (Food Additives and Cosmetics): 5kg
 Interior packing: plastic bag, cans
 Exterior packing: carton

ORYZA GAMMA MILKY (Food and Cosmetics): 5kg
 Interior packing: cans
 Exterior packing: carton
9. Storage
Store under room temperature in dark place in sealed condition. Avoid places with high temperature and high humidity.

10. Expression
Food
GAMMA ORYZANOL: γ-oryzanol, oryzanol
ORYZA GAMMA MILKY: Vegetable oil, glycerin, glycerin fatty acid ester, γ-oryzanol, lecithin
Note: Please follow the regulations of the countries of sales. In some countries, the usage of gamma-oryzanol is restricted as food additive or medicine.

Cosmetic (INCI Name)
GAMMA ORYZANOL: ORYZANOL
ORYZA GAMMA MILKY: GLYCERIN, WATER, CAPRYLIC/CAPRIC TRIGLYCERIDE, POLYGLYCERYL-10 OLEATE, ORYZANOL, LECITHIN
This product is extracted and refined from the rice bran of *Oryza sativa* Linne (Gramineae). Dried product contains minimum of 98.0 % γ-oryzanol (C_{40}H_{58}O_{4}).

1. **Appearance**
 White or light yellowish crystalline powder.
 Inert Smell.

2. **Certification Test**
 (1) The maximum absorbance wavelength of this product in n-heptane solution (1 → 100,000) is at 231nm, 291nm and 315nm.

 (2) To 0.01 g of this product, add 10 ml of Potassium hydroxide-ethanol. After heating, a yellow color develops.

 (3) Dissolve 0.01 g of this product with 2 ml of acetone, add 0.1 ml of ferric chloride/ethanol solution (1 → 50). A green to yellow-green color develops.

3. **Content of γ-Oryzanol**
 Min. 98.0 %

4. **Loss on Drying**
 Max. 0.5 %

5. **Ignition Residue**
 Max. 0.5 %

Notes:
- Analysis for Hygienic Chemists, 1g, 105°C, 1h
- The Japanese Standards for Food Additives
6. Purity Test

(1) Heavy Metals (as Pb) Max. 10 ppm (Sodium Sulfide Colorimetric Method)
(2) Arsenic (as As$_2$O$_3$) Max. 1 ppm (Standard Methods of Analysis in Food Safety Regulation, The Third Method, Apparatus B)

7. Standard Plate Counts Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

8. Moulds and Yeasts Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

9. Coliforms Negative (Analysis for Hygienic Chemists)

10. Composition

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ-oryzanol</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: Please follow the regulations of the countries of sales. In some countries, the usage of gamma-oryzanol is restricted as food additive or medicine.
PRODUCT STANDARD

PRODUCT NAME

ORYZA GAMMA MILKY

(FOOD)

This product is white milky emulsion which contains a minimum of 5% γ-oryzanol (C_{40}H_{58}O_{4}, 602.90) emulsified with high quality of emulsifying agents.

1. Appearance
 Viscous white or light yellowish emulsion with unique smell.

2. Identification
 When 2g of this product is dissolved and heated with potassium hydroxide ethanolic solution, there occurs yellow coloring. (γ-oryzanol)

3. Content of γ-Oryzanol
 Min. 5.0 %

(QUANTITATIVE ANALYSIS)

Dissolving 0.03 g of this product to ethanolic solution until it becomes 100 ml. If this solvent is cloudy, filtrate with filter paper. Putting this solvent into a quartz cell which layer length is 10 mm, measuring its absorbance on 325 nm wavelength. Calculate the contents of γ-oryzanol using the following formula with the measured absorbance (E).

\[
\text{Quantity of γ-oryzanol (\%)} = \frac{E \times 100}{W \times 359}
\]

E: Absorbance
W: γ-oryzanol weight (g) in 100 ml of sample solution used for measurement.
359: extinction coefficient of γ-oryzanol E (1%, 1cm)

4. Purity Test
 (1) Heavy Metals (as Pb) Max. 10 ppm (Sodium Sulfide Colorimetric Method)
 (2) Arsenic (as As_{2}O_{3}) Max. 1 ppm (Standard Methods of Analysis in Food Safety Regulation, The Third Method, Apparatus B)

5. Standard Plate Counts
 Max. 1x10^{2} cfu/g (Analysis for Hygienic Chemists)

6. Moulds and Yeasts
 Max. 1x10^{2} cfu/g (Analysis for Hygienic Chemists)

7. Coliforms
 Negative (Analysis for Hygienic Chemists)

8. Composition

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerin</td>
<td>40%</td>
</tr>
<tr>
<td>Purified water</td>
<td>25%</td>
</tr>
<tr>
<td>Caprylic/capric acid triglyceride</td>
<td>15%</td>
</tr>
<tr>
<td>Glycerin ester of fatty acid</td>
<td>12%</td>
</tr>
<tr>
<td>γ-oryzanol</td>
<td>5%</td>
</tr>
<tr>
<td>Lecithin</td>
<td>3%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: Please follow the regulations of the countries of sales. In some countries, the usage of gamma-oryzanol is restricted as food additive or medicine.
This product is milky white liquid which contains a minimum of 4.0 – 6.0 % \(\gamma \)-oryzanol \((C_{40}H_{58}O_{4})\) emulsified with high quality of emulsifying agents.

1. **Appearance**
 - Viscous white or light yellowish emulsion with unique smell

2. **Identification**
 - (1) \(\gamma \)-oryzanol
 - The absorbance at the maximum wave length of ethanolic solution (1→5000) is at 325 nm.
 - (2) Triglyceride
 - When analysis is performed by gas chromatography (Column temperature: 120°C), peaks of standard solution (caprylic acid, capric acid) and sample solution show same retention time.
 - (3) Glycerin ester of fatty acid
 - When analysis is performed by gas chromatography (Column temperature: 200°C), peaks of standard solution (oleic acid) and sample solution show same retention time.
 - (4) Glycerin
 - 10 g of this product is dissolved in 50 ml of ethanol in separating funnel. Ethanol layer is evaporated. When 0.5 g of potassium hydrogensulfate is added in residue and heated, it occurs irritating smell.
 - (5) Lecithin
 - 1 g of this product, 5 g of potassium sulfate, 0.5 g copper sulfate and 20 ml of sulfuric acid are heated in kjeldahl flask. After solution changes transparent blue, heat for 2 hours. After cool, 20 ml of water is added. 10 ml of ammonium molybdate solution is added in 5 ml of this solution, then it occurs yellow precipitate.

3. **Content of \(\gamma \)-Oryzanol**
 - Min. 4.0 – 6.0%

(QUANTITATIVE ANALYSIS)
Dissolve 0.03 g of this product to ethanolic solution until it becomes 100 ml. If this solvent is cloudy, filtrate with filter paper. Putting this solvent into a quartz cell which layer length is 10 mm, measuring its absorbance on 325nm wavelength. Calculate the contents of \(\gamma \)-oryzanol using the following formula with the measured absorbance \((E)\).

\[
\text{Quantity of } \gamma\text{-oryzanol} \% = \frac{E \times 100}{W \times 359}
\]

- \(E\): Absorbance
- \(W\): \(\gamma \)-oryzanol weight (g) in 100 ml of sample solution used for measurement.
- 359: extinction coefficient of \(\gamma \)-oryzanol \(E\) (1%, 1cm)
4. Purity Test

(1) Heavy Metals (as Pb) Max. 10 ppm (The Second method of The Japanese Standards of Quasi-Drug Ingredients)

(2) Arsenic (as As₂O₃) Max. 1 ppm (The Third Method of The Japanese Standards of Quasi-Drug Ingredients)

5. Standard Plate Counts Max. 1x10⁷ cfu/g (Analysis for Hygienic Chemists)

6. Moulds and Yeasts Negative (Analysis for Hygienic Chemists)

7. Coliforms Negative (Analysis for Hygienic Chemists)

8. Composition

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLYCEROL</td>
<td>40%</td>
</tr>
<tr>
<td>WATER</td>
<td>25%</td>
</tr>
<tr>
<td>CAPRYLIC/CAPRIC TRIGLYCERIDE</td>
<td>15%</td>
</tr>
<tr>
<td>POLYGLYCERYL-10 OLEATE</td>
<td>12%</td>
</tr>
<tr>
<td>ORYZANOL</td>
<td>5%</td>
</tr>
<tr>
<td>LECITHIN</td>
<td>3%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Ref. The Japanese Standard of Quasi-Drug Ingredients
ORYZA OIL & FAT CHEMICAL CO., LTD. striving for the development of the new functional food materials to promote health and general well-being.

From product planning to OEM - For any additional information or assistance, please contact:

ORYZA OIL & FAT CHEMICAL CO., LTD.
Head quarter
No.1, Numata Kitagata-cho, Ichinomiya-city, Aichi-pref., 493-8001 JAPAN
TEL: +81 (0) 586 86 5141
FAX: +81 (0) 586 86 6191
URL/http: //www.oryza.co.jp/
E-mail: info@oryza.co.jp

Tokyo Office
Daitokyo Build. 5F, 1-24-10, Suda-cho, Kanda, Chiyoda-ku, Tokyo, 101-0041 JAPAN
TEL: +81 (0) 3 5209 9150
FAX: +81 (0) 3 5209 9151
E-mail: tokyo@oryza.co.jp

*The unapproved copy of this catalogue and appropriation are forbidden except for the exception on the Copyright Act.
*The contents of this catalogue may be changed without prior notice.

Established Date: April 1, 2010
Revised Date: February 15, 2011