ORYZA PROTEIN
ORYZA PEPTIDE

Rich in nutrients, anti-obesity, muscle-building, beauty enhancement effects

- ORYZA PROTEIN-P70
 (Powder, Food Grade)

- ORYZA PROTEIN-PC70
 (Powder, Cosmetic Grade)

- ORYZA PEPTIDE-P60
 (Water-soluble powder, Food Grade)

- ORYZA PEPTIDE-PC60
 (Water-soluble powder, Cosmetic Grade)

ORYZA OIL & FAT CHEMICAL CO., LTD.
1. Introduction

Rice is the most common staple food in Japan and Japanese consume rice of an average of 60 kg per annum. Rice serves as an important source of carbohydrates as main energy source required for daily functions. Rice is loaded with health promoting bioactive components such as gamma-oryzanol, ferulic acid, tocotrienol (anti-oxidant and anti-metabolic), ceramide (excellent skin barrier function), and GABA (natural relaxant that lowers blood pressure).

In addition, rice is an important source of protein \(^{1,2}\), although the protein constituent in rice is relatively low, 6.8% in brown rice and 6.1% \(^{3}\) in white rice respectively. Rice contributed approximately 15% of Japanese dietary protein due to high consumption of rice as daily diet \(^{4}\).

ORYZA PROTEIN-P70 is 100% derived from non-GMO rice with excellent nutritional profile. Meanwhile, ORYZA PEPTIDE-P60 is water-soluble rice peptide produced by enzymatic decomposition of rice protein.

ORYZA PROTEIN and ORYZA PEPTIDE are high quality functional ingredients suitable to be incorporated into a wide range of functional food, food and cosmetic applications. ORYZA PROTEIN and ORYZA PEPTIDE offer high quality protein with supportive research data on the prevention of weight gain and beauty enhancement.
Table of Contents

1. Introduction p.1

2. ORYZA PROTEIN p.3
 (1) Nutritious Value
 (2) Function to Prevent Weight Increase
 (3) Function to Lower Cholesterol Level
 (4) Emulsifying Capacity
 (5) No Need for Allergen Indication
 (6) Other Functions

3. ORYZA PEPTIDE p.8
 (1) Water Solubility and Nutritious Value
 (2) Function to Prevent Weight Increase
 (3) Beauty Enhancement Function
 (3-1) Function to Inhibit Melanin Production
 (3-2) Expression of mRNAs of Skin Composition-Related Molecules

4. Reference Literatures p.12

5. Stability p.12
 (1) Stability during Long Time Storage
 (2) pH Stability

7. Safety p.14
 (1) Residual pesticides
 (2) Acute Toxicity (LD_{50})
 (3) Melamine

8. Recommended Ingestion Dose p.15

9. Application Examples p.15

10. Packaging p.15

11. Storage p.16

12. Indication Examples p.16

Specifications p.17
2. ORYZA PROTEIN

(1) Nutritional Value

According to Koo et al.², rice protein offer higher nutritional value compared to other plant proteins and rice protein demonstrated highest digestive efficiency compared with wheat, corn and oat. Similar study group reported that the protein efficiency of rice improved to 106% (while the protein efficiency of casein is 100%) upon addition of amino acids lysine and threonine.

Table 1 Digestive Efficiency of Plant Proteins²)

<table>
<thead>
<tr>
<th></th>
<th>Rice</th>
<th>Wheat</th>
<th>Corn</th>
<th>Oat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digestive Efficiency (%)</td>
<td>93</td>
<td>90</td>
<td>89</td>
<td>90</td>
</tr>
</tbody>
</table>

Digestive efficiency of Egg Protein : 100%.

Upon comparison with animal protein, Morita et al.⁵), reported that the digestive efficiency of rice protein and casein was 87% and 97% respectively while their biological value* was 51% and 78% respectively. Murata et. al¹), reported the relative nutritious value of rice protein is 51% of a whole egg.

\[
\text{Biological value} = \frac{\text{nitrogen in the body}}{\text{nitrogen absorbed into the body}} \times 100
\]

The value is a ratio between amount of protein absorbed and the amount of protein in the body.

Table 2 Digestive Efficiency and Biological Value⁵) of Rice Protein and Casein

<table>
<thead>
<tr>
<th></th>
<th>Rice</th>
<th>Casein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digestive Efficiency (%)</td>
<td>87</td>
<td>97</td>
</tr>
<tr>
<td>Biological Value (%)</td>
<td>51</td>
<td>78</td>
</tr>
</tbody>
</table>

The content of essential amino acids of ORYZA PROTEIN-P70 is 15% higher than that of isolated soybean protein. In addition, it has been reported that the content of essential amino acids in white rice is higher than protein from soybean, wheat and pea and is equivalent to that of milk protein⁶).

Rice protein offers excellent amino acid profile in spite of the low digestive efficiency and biological value. Moreover, ORYZA PROTEIN-P70 is easily digestible and has been maintaining Japanese health throughout centuries.
(2) Prevention of Weight Gain

In an *in vivo* experiment, oral administration of ORYZA PROTEIN-P70 in mice fed with high fat diet showed acceleration of fat metabolism and reduction of fat deposition. It is suggestive to prevent weight gain.

[Test Method]
Mice (ddy, male, 10-week old) were divided into 3 groups (n=7 or 8 in each group), one group fed with regular feed, 2 groups fed with high fat diet feed (High Fat Diet 32, CLEA Japan). Mice in one of the high fat diet group were given 1 g/kg of ORYZA PROTEIN-P70 orally once daily. Weight of mice was recorded over time and their organs were isolated 16 days later. RNA was extracted from each organ, cDNA was produced and gene expression was evaluated by RT-PCR.

Table 3 Amino Acid Profile of ORYZA PROTEIN-P70

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Amino Acid Content g/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine</td>
<td>6.29</td>
</tr>
<tr>
<td>Lysine</td>
<td>2.26</td>
</tr>
<tr>
<td>Histidine</td>
<td>2.05</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>4.25</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>3.91</td>
</tr>
<tr>
<td>Leucine</td>
<td>6.54</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>3.26</td>
</tr>
<tr>
<td>Methionine</td>
<td>2.35</td>
</tr>
<tr>
<td>Valine</td>
<td>4.62</td>
</tr>
<tr>
<td>Alanine</td>
<td>4.37</td>
</tr>
<tr>
<td>Glycine</td>
<td>3.46</td>
</tr>
<tr>
<td>Proline</td>
<td>3.70</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>14.00</td>
</tr>
<tr>
<td>Serine</td>
<td>3.92</td>
</tr>
<tr>
<td>Threonine</td>
<td>2.88</td>
</tr>
<tr>
<td>Asparagic acid</td>
<td>6.92</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>1.10</td>
</tr>
<tr>
<td>Cystine</td>
<td>1.92</td>
</tr>
</tbody>
</table>

Essential amino acids are highlighted.
As shown in Figure 3, weight gain in group fed with ORYZA PROTEIN-P70 was lower and better controlled compared with group fed with high fat diet only. In addition, the following findings was showed in group fed with ORYZA PROTEIN-P70:

- Weight of soleus muscle increase (Fig. 4)
- Reduced Perirenal fat (Fig. 5)
- Reduced Liver weight (Fig. 6)

The findings with RT-PCR indicated that the expression of CPT 1 (carnitine palmitoyltransferase – an enzyme involve in beta oxidation) was significantly enhanced in the liver of mice fed with ORYZA PROTEIN-P70 and tended to be slightly promoted in soleus muscle of mice fed with ORYZA PROTEIN-P70.
Fatty acid is transported into the mitochondria by carnitine palmitoyltransferase for further metabolism in the beta oxidation pathway. Fat that is not being metabolized will be stored in the liver and adipose tissue. Yang et al., 7) reported that liver triglyceride level reduced significantly in rats fed containing rice protein. Enhancement of CPT expression and reduced liver triglyceride level as reported by Yang et al., suggested that ORYZA PROTEIN is preventive from weight gain due to accelerated liver fat metabolism.

(3) Function to Lower Cholesterol Level

In the study conducted by Yang et al. 7), 20% casein, isolated soy protein and rice protein was given to 7-week old male rats respectively together with high cholesterol feed. Meanwhile, 14% casein, isolated soy protein & rice protein was given to 20-week old rats respectively together with cholesterol free feed. The following findings were reported in both cases:

- Serum cholesterol was lowered approximately 20% in groups consuming feed with rice protein compared to groups consuming feed with casein.
- The effect was equivalent to soy protein

Morita et al., 5) reported similar findings.

Table 4 Changes in Serum Lipid concentration when protein mixed feeds were given 5)

<table>
<thead>
<tr>
<th></th>
<th>Casein</th>
<th>Isolated Soy Protein</th>
<th>Rice Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Cholesterol (mg/dL)</td>
<td>HDL-Cholesterol (mg/dL)</td>
<td>Neutral Fat (mg/dL)</td>
</tr>
<tr>
<td>7-week Old Rats</td>
<td>62.4±4.0a</td>
<td>41.2±1.9a</td>
<td>21.9±2.6</td>
</tr>
<tr>
<td></td>
<td>44.4±4.4b</td>
<td>31.4±1.4b</td>
<td>22.2±2.2</td>
</tr>
<tr>
<td>20-week Old Rats</td>
<td>61.6±7.9a</td>
<td>46.2±1.4b</td>
<td>47.7±3.0b</td>
</tr>
<tr>
<td></td>
<td>37.8±4.0a</td>
<td>30.0±1.8b</td>
<td>39.1±2.3a</td>
</tr>
<tr>
<td></td>
<td>43.2±7.5</td>
<td>33.5±3.4</td>
<td>34.3±4.1</td>
</tr>
</tbody>
</table>

There is a significant difference between values marked with a letter (a, b) in each item. Average value ± S.E.
(4) Emulsifying Capacity

Emulsifying capacity of Rice Protein was evaluated and results revealed:

- Higher emulsifying capacity compared to soy protein, wheat protein and milk protein
- Higher emulsifying capacity than pea protein

ORYZA PROTEIN-P70 offers excellent emulsifying capacity, equivalent to or better than commonly used emulsifying proteins. ORYZA PROTEIN-P70 can improve the property of finished products.

![Emulsifying Capacity Chart]

[Test Method]

15mL of rice oil was added to 15mL of 3% sample protein solution and the mixture was homogenized at 17,500rpm at room temperature for 5 minutes. 10mL of emulsified sample was collected and centrifuged at 1,500rpm at room temperature for 5 minutes. Emulsifying capacity of each sample is determined by the following formula:

\[\text{Emulsifying capacity} (\%) = \frac{\text{cubic volume of emulsified layer (mL)}}{10\text{mL}} \times 100 \]

Fig. 9 Comparison on Emulsifying Capacity of Various Proteins

(5) Non Allergenic

In Japan, shrimp, crab, wheat, buckwheat, egg, milk and peanuts are classified as specific raw ingredients due to the allergenic nature. It is mandatory requirement to indicate the presence of specific raw ingredients in all processed food. On the other hand, no mandatory indication is required for food containing rice and rice protein. Rice Protein contains allergen, 16kDa molecular weight protein has been reported as the major allergen in rice protein. However, Yamada et. al.,\(^{10}\) has reported that 14-16kDa allergen contained in rice protein is hardly absorbed by small intestine. Another report indicated that rice protein is considered hypoallergenic due to its gluten free nature\(^{5}\). Therefore, it is believed that rice protein is a safe source of protein.

(6) Other Functions

Ishii et. al.,\(^{11}\) reported that bread consumption accelerates fat synthesis and deposit compared with rice consumption. Meanwhile, Chen et. al.,\(^{12}\) reported that rice protein demonstrated positive effect on bone mass density (BMD) and bone mineral content (BMC) and the effect was better compared with casein.
3. ORYZA PEPTIDE
(1) Water Solubility and Nutritious Value

ORYZA PEPTIDE-P60 is easily water-soluble peptide powder produced by enzymatic decomposition of rice protein. The composition of amino acids and essential amino acids (in % to amino acid) are very similar to ORYZA PROTEIN-P70. ORYZA PEPTIDE-P60 is highly water soluble suitable to be incorporated into functional beverages.

![Solubility of ORYZA PEPTIDE-P60](image)

Table 5 Amino Acid Composition of ORYZA PEPTIDE-P60

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Amino Acid Content (g/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine</td>
<td>6.73</td>
</tr>
<tr>
<td>Lysine</td>
<td>2.14</td>
</tr>
<tr>
<td>Histidine</td>
<td>1.81</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>3.09</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>2.49</td>
</tr>
<tr>
<td>Leucine</td>
<td>4.45</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>2.16</td>
</tr>
<tr>
<td>Methionine</td>
<td>0.88</td>
</tr>
<tr>
<td>Valine</td>
<td>3.33</td>
</tr>
<tr>
<td>Alanine</td>
<td>3.31</td>
</tr>
<tr>
<td>Glycine</td>
<td>2.77</td>
</tr>
<tr>
<td>Proline</td>
<td>2.79</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>11.20</td>
</tr>
<tr>
<td>Serine</td>
<td>3.11</td>
</tr>
<tr>
<td>Threonine</td>
<td>2.08</td>
</tr>
<tr>
<td>Asparagic acid</td>
<td>5.85</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>0.39</td>
</tr>
<tr>
<td>Cystine</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Essential amino acids are highlighted.
(2) Prevention of Weight Gain

In an \textit{in vivo} experiment, oral administration of ORYZA PEPTIDE-P60 with high fat diet feed showed enhancement of fat metabolism and reduction of fat deposition. It is believed to prevent weight gain.

[Test Method]

Mice (ddy, male, 10-week old) were divided into 3 groups (n=7 or 8 in each group. One group of mice was fed with regular feed only, two groups fed with high fat diet (High Fat Diet 32, CLEA Japan). ORYZA PEPTIDE-P60 (1g/kg) once a day was orally given to one of the group fed with high fat diet feed. Weight of mice was measured over time and their organs were isolated 16 days later. RNA was extracted from each organ, cDNA was produced and gene expression was quantified by RT-PCR.

Results indicated the following observations in group consuming ORYZA PEPTIDE-P60:

- Weight gain was prevented
- Weight of soleus muscle increased
- Weight of perirenal fat significantly reduced
- Weight of liver significantly reduced
Quantification of RT-PCR indicated that the expression of CPT1 (carnitine palmitoyl transferase – an enzyme involved in beta-oxidation) was significantly enhanced in mice liver fed with ORYZA PEPTIDE-P60.

In addition, results showed that ORYZA PEPTIDE-P60 significantly prevented weight gain of perirenal fat in spite of consumption of high fat diet. Therefore, it is suggestive that ORYZA PEPTIDE-P60 prevents weight gain by enhancing fat metabolism and decreasing fat deposition.

(3) Beauty Enhancement Function

(3-1) Inhibition of Melanin Production

The effect of ORYZA PEPTIDE-P60 on melanin production was evaluated in vitro using B16 melanoma cells model. As shown in Table 6, ORYZA PEPTIDE-P60 demonstrated dose-dependent inhibition on melanin cells production.

<table>
<thead>
<tr>
<th>Concentration (µg/mL)</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanin Production Rate (%)</td>
<td>100±4.7</td>
<td>94.3±0.3</td>
<td>91.0±2.5</td>
<td>86.8±1.5</td>
</tr>
</tbody>
</table>

[Test Method]
B16 melanoma cells (1x10⁵ cells/mL) were suspended in 2mM theophylline containing α-MEM medium (containing 10% FCS, penicillin/streptomycin) and 200µL of the suspension was inseminated into a 48-well plate. Sample(20µL) of ORYZA PEPTIDE-P60 was added to the cells and cultured for 3 days. Absorbance at wavelength 415nm was determined by microplate reader after ultrasonic fragmentation (1N NaOH) of cultured cells.
(3-2) Suppression on genetic expression of ceramidase & hyaluronidase

The effect of ORYZA PEPTIDE-P60 on the genetic expression of ceramidase and hyaluronidase was evaluated in vivo using hairless mice (Hos: HR-1, female, 5-week old).

Ceramides are family of lipid molecules consists of sphingosine and a fatty acid. It is predominantly found in the epidermal intracellular lipid bilayer. Ceramides play important role in maintaining skin moisture and skin barrier function. The synthesis of ceramide is catalyzed by the enzyme serine palmitoyl transferase and degraded by ceramidase.

In an in vivo experiment, ORYZA PEPTIDE-P60 (50, 100, 200mg/kg) was orally given to hairless mice for 7 days and genetic expression of ceramide-metabolizing enzymes in skin was determined by RT-PCR. Results showed that genetic expression of ceramidases, namely, neutral ceramidase, alkaline ceramidase and phyto-ceramidase was suppressed at all doses of ORYZA PEPTIDE-P60. With exception, genetic expression of acidic ceramidase was not suppressed.

Meanwhile, hyaluronic acid is an important component of the extracellular matrix and plays important role in skin wound healing and skin moisture retention. Hyaluronic acid is degraded by family of enzymes called hyaluronidases. Similarly, an in vivo experiment was conducted to evaluate the effect of ORYZA PEPTIDE-P60 on the genetic expression of hyaluronidases. ORYZA PEPTIDE-P60 was orally given to hairless mice for 7 days. Genetic expression of hyaluronidases was determined by RT-PCR. Results indicated that genetic expression of hyaluronidase 1, hyaluronidase 2, hyaluronidase 3 and hyaluronidase 4 was suppressed by ORYZA PEPTIDE-P60 at a dose of 200mg/kg.

Based on the above results, it is suggestive that ORYZA PEPTIDE-P60 is potentially beneficial in preventing the breakdown of ceramide and hyaluronic acid and thus improve skin condition and skin moisture retention.

Table 7 The effect of ORYZA PEPTIDE-P60 on the genetic expression of Ceramidases

<table>
<thead>
<tr>
<th></th>
<th>Acid ceramidase</th>
<th>Neutral ceramidase</th>
<th>Alkaline ceramidase</th>
<th>Phyto-ceramidase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.00±0.03</td>
<td>1.00±0.02</td>
<td>1.00±0.02</td>
<td>1.00±0.03</td>
</tr>
<tr>
<td>50 mg/kg</td>
<td>1.25±0.02</td>
<td>0.80±0.01</td>
<td>0.81±0.02</td>
<td>0.76±0.01</td>
</tr>
<tr>
<td>100 mg/kg</td>
<td>1.18±0.01</td>
<td>0.73±0.01</td>
<td>0.72±0.03</td>
<td>0.67±0.01</td>
</tr>
<tr>
<td>200 mg/kg</td>
<td>1.07±0.02</td>
<td>0.67±0.01</td>
<td>0.62±0.01</td>
<td>0.77±0.01</td>
</tr>
</tbody>
</table>

Table 8 The effect of ORYZA PEPTIDE-P60 on the genetic expression of Hyaluronidases

<table>
<thead>
<tr>
<th></th>
<th>Hyaluronidase 1</th>
<th>Hyaluronidase 2</th>
<th>Hyaluronidase 3</th>
<th>Hyaluronidase 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.00±0.03</td>
<td>1.00±0.03</td>
<td>1.00±0.01</td>
<td>1.00±0.01</td>
</tr>
<tr>
<td>50 mg/kg</td>
<td>0.78±0.01</td>
<td>0.63±0.01</td>
<td>0.92±0.01</td>
<td>1.07±0.02</td>
</tr>
<tr>
<td>100 mg/kg</td>
<td>0.65±0.01</td>
<td>0.54±0.01</td>
<td>0.76±0.01</td>
<td>0.92±0.01</td>
</tr>
<tr>
<td>200 mg/kg</td>
<td>0.72±0.01</td>
<td>0.60±0.02</td>
<td>0.78±0.01</td>
<td>0.78±0.01</td>
</tr>
</tbody>
</table>

[Test Method]

Hairless mice (Hos: HR-1, female, 5-week old) were kept for 3 days. ORYZA PEPTIDE-P60 (50, 100, 200mg/kg) once daily was orally given to the mice for 7 days. mRNA of skin was prepared to transcribed into cDNA for genetic expression evaluation by RT-PCR.
4. Reference Literatures

4) Kenichi Otsubo, Shokuhin to Kaimatsu (Foods and Development), 43(10), 11-13, 2008
6) Revised Amino Acid Composition of Foods in Japan (edited by the Resources Council, Science and Technology Agency in 1986)
8) Urisu, A. et. al., Int. Arch. Allergy Appl. Immunol., 96, 244-252, 1991

5. Stability

(1) Storage Stability

ORYZA PROTEIN-P70 is highly stable upon storage for long period of time. As shown below, the protein content remained unchanged after 6 months storage at 40°C/RH 80%.

![Fig. 18 Stability of ORYZA PROTEIN-P70 upon storage for 6 months](image)

[Test Method]

ORYZA PROTEIN-P70 was stored in dark at 40°C/RH 80% for 6 months. The protein content was determined before and after 6 months by Kjeldahl method.
(2) pH Stability

As shown in Fig. 19, ORYZA PEPTIDE-P60 is highly stable under acidic and neutral condition. Meanwhile, minimal degradation of peptide is observed under alkaline condition.

![Fig. 19 pH Stability of aqueous ORYZA PEPTIDE-P60](image)

[Test Method]
ORYZA PEPTIDE-P60 was dissolved in water. Storage pH was adjusted with hydrocholic acid for acidic condition and diluted alkali for alkaline condition. ORYZA PEPTIDE-P60 was stored under different pH condition at room temperature for 3 days. The peptide content was determined to evaluate its pH stability.

6. Nutrition Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount per 100g</th>
<th>Analytical Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ORYZA PROTEIN</td>
<td>ORYZA PEPTIDE</td>
</tr>
<tr>
<td></td>
<td>-P70</td>
<td>-P60</td>
</tr>
<tr>
<td>Energy</td>
<td>383 kcal</td>
<td>371 kcal</td>
</tr>
<tr>
<td>Protein</td>
<td>75.0 g</td>
<td>65.8 g</td>
</tr>
<tr>
<td>Fat</td>
<td>0.9 g</td>
<td>0.1 g</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>18.7 g</td>
<td>26.7 g</td>
</tr>
<tr>
<td>Sodium</td>
<td>4 mg</td>
<td>36 mg</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.0 g</td>
<td>0.1 g</td>
</tr>
<tr>
<td>Moisture</td>
<td>2.3 g</td>
<td>2.8 g</td>
</tr>
<tr>
<td>Ash</td>
<td>3.1 g</td>
<td>4.6 g</td>
</tr>
<tr>
<td>Dietary fiber</td>
<td>8.2 g</td>
<td>1.0 g</td>
</tr>
</tbody>
</table>

*1 Energy expression standard (Ministry of Health and Welfare’s announcement No. 176)
Conversion factor: Protein 4, fat 9, sugar 4; dietary fiber 2
*2 Nitrogen, protein conversion factor: 5.95
*3 Carbohydrate expression standard (Ministry of Health and Welfare’s announcement No. 176)
ORYZA PROTEIN-P70
Test trustee: SRL, Inc / Date of analysis: July 30, 2009 / Test No.: 200907160028
ORYZA PEPTIDE-P60
Test trustee: SRL, Inc / Date of analysis: September 25, 2009 / Test No.: 200909090044
7. Product Safety Profile

(1) Residual Agricultural Chemicals

As confirmed by test trustee, analysis results of ORYZA PROTEIN-P70 is conformed to the regulation stipulated in the Food Sanitation Act on 517 residual agricultural compounds.

Test trustee: Masis Co. Ltd.
Data: May 7, 2009
Report No.: 30318

As confirmed by test trustee, the analysis results of ORYZA PEPTIDE-P60 is conformed to the regulation stipulated in the Food Sanitation Act on 518 residual agricultural compounds.

Test Trustee: Masis Co., Ltd.
Date: Sept 25, 2009
Report No.: 33400

(2) Acute Toxicity (LD₅₀)

Acute Toxicity test was conducted according to the Guidelines for Single-Dose Toxicity Tests for Pharmaceutical Products where ORYZA PROTEIN-P70 2000mg/kg was orally given to starved mice (male & female ddy, 5 weeks old, weight ~30g) for 14 days. No abnormalities and fatal event observed at 2000mg/kg. No abnormalities of organs observed under macroscopic examination upon autopsy. Thus, LD₅₀ of ORYZA PROTEIN-P70 is deduced to be >2000mg/kg.

Similarly, ORYZA PEPTIDE-P60 5000mg/kg was orally given to starved mice (male & female ddy, 5 weeks old, weight ~30g) for 14 days. No abnormalities and fatal event observed at 5000mg/kg. No abnormalities of organs observed under macroscopic examination upon autopsy. Thus, LD₅₀ of ORYZA PROTEIN-P70 is deduced to be >5000mg/kg.

(3) Melamine

The presence of melamine is monitored, ORYZA PROTEIN-P70 was tested according to the analysis method laid down by Ministry of Health, Labour and Welfare. As confirmed by test trustee, ORYZA PROTEIN-P70 conformed to the permitted level stipulated.

Test trustee: Qsai Analysis and Research Center Co., Ltd.
Date: April 27, 2009
Report No.: 2009041509-01-1
8. Recommended Daily Dosage

<table>
<thead>
<tr>
<th>Products</th>
<th>Claims</th>
<th>Recommended daily dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oryza Protein-P70</td>
<td>Nutritional support</td>
<td>500～1,000 mg/day</td>
</tr>
<tr>
<td></td>
<td>Anti-obesity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muscle building</td>
<td></td>
</tr>
<tr>
<td>Oryza Peptide-P60</td>
<td>Nutrient</td>
<td>500～1,000 mg/day</td>
</tr>
<tr>
<td></td>
<td>Anti-obesity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muscle building</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beauty enhancement</td>
<td>100～200 mg/day</td>
</tr>
</tbody>
</table>

9. Applications

<table>
<thead>
<tr>
<th>Applications</th>
<th>Claims</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foods</td>
<td>Nutritional support food, Beauty food, Anti-obesity food</td>
<td>Beverages, Hard & soft capsules, tablets, Candies, chewing gums, chocolates, wafers, jellies, Ham, sausage, etc.</td>
</tr>
<tr>
<td></td>
<td>1) Nutritional support</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Anti-obesity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Beauty enhancement</td>
<td></td>
</tr>
<tr>
<td>Cosmetics</td>
<td>Beauty cosmetic</td>
<td>Body lotions, body gel etc.</td>
</tr>
</tbody>
</table>

10. Packaging

<table>
<thead>
<tr>
<th>Products</th>
<th>Weight</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oryza Protein-P70 (Powder, for food)</td>
<td>Interior packaging : Aluminum bag</td>
<td>1 kg</td>
</tr>
<tr>
<td>Oryza Protein-PC70 (Powder, for cosmetic)</td>
<td>Exterior packaging : Cardboard</td>
<td>5 kg</td>
</tr>
<tr>
<td>Oryza Peptide-P60 (Water-soluble powder, for food)</td>
<td>Interior packaging : Aluminum bag</td>
<td>1 kg</td>
</tr>
<tr>
<td>Oryza Peptide-PC60 (Water-soluble powder, for cosmetic)</td>
<td>Exterior packaging : Cardboard</td>
<td>5 kg</td>
</tr>
</tbody>
</table>
11. Storage

Store in a cool, dry, dark place. It is recommended to finish ORYZA PEPTIDE-P60 & ORYZA PEPTIDE-PC60 once open as it is highly hygroscopic. Otherwise, dessicant bag is recommended to be inserted for storage purpose.

12. Expression

<Food>
ORYZA PROTEIN-P70
Expression : Rice Protein

ORYZA PEPTIDE-P60
Expression : Rice Peptide

<Cosmetic>
ORYZA PROTEIN-PC70
INCI name : ORYZA SATIVA (RICE) BRAN EXTRACT

ORYZA PEPTIDE-PC60
Expression : HYDROLYZED RICE BRAN EXTRACT
This product is protein powder derived from rice (Oryza sativa Linne). It guarantees minimum of 70.0 % protein.

1. Appearance
 Light brown powder. Light unique smell.

2. Protein
 Min. 70.0 % (Kjeldahl method)

3. Loss on Drying
 Max. 10.0 % (Analysis for Hygienic Chemists, 1g, 105°C, 2h)

4. Purity Test
 (1) Heavy Metals
 Max. 20 ppm (The Japanese Standards for Food Additives)

 (2) Arsenic
 Max. 2 ppm (Standard Methods of Analysis in Food Safety Regulation)

5. Standard Plate Counts
 Max. \(5 \times 10^3\) cfu/g (Analysis for Hygienic Chemists)

6. Moulds and Yeasts
 Max. \(1 \times 10^2\) cfu/g (Analysis for Hygienic Chemists)

7. Coliforms
 Negative (Analysis for Hygienic Chemists)

8. Composition
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice Protein</td>
<td>100 %</td>
</tr>
</tbody>
</table>
This product is protein powder derived from rice (*Oryza sativa* Linne). It guarantees minimum of 70.0 % protein.

1. **Appearance**
 - Light brown powder. Light unique smell.

2. **Protein**
 - Min. 70.0 %

3. **Loss on Drying**
 - Max. 10.0 % (1g, 105°C, 2h)

4. **Purity Test**
 - (1) Heavy Metals
 - Max. 20 ppm (The Second method)
 - (2) Arsenic
 - Max. 2 ppm (The Third method)

5. **Standard Plate Counts**
 - Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

6. **Moulds and Yeasts**
 - Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

7. **Coliforms**
 - Negative (Analysis for Hygienic Chemists)

8. **Composition**
 - Ingredient | Content
 - ORYZA SATIVA (RICE) BRAN EXTACT | 100 %

Ref: The Japanese Standards of Quasi-Drug Ingredients.
This product is hydrolyzed rice (*Oryza sativa* Linne) protein with an enzyme. It guarantees minimum of 60.0 % peptide. This product is water-soluble.

1. Appearance
 Slightly yellow or light brown powder. Light unique smell.

2. Peptide
 Min. 60.0 % (Kjeldahl method)

3. Loss on Drying
 Max. 10.0 % (Analysis for Hygienic Chemists, 1g, 105°C, 2h)

4. Purity Test
 (1) Heavy Metals Max. 20 ppm (The Japanese Standards for Food Additives)
 (2) Arsenic Max. 2 ppm (Standard Methods of Analysis in Food Safety Regulation)

5. Standard Plate Counts
 Max. \(5 \times 10^3\) cfu/g (Analysis for Hygienic Chemists)

6. Moulds and Yeasts
 Max. \(1 \times 10^2\) cfu/g (Analysis for Hygienic Chemists)

7. Coliforms
 Negative (Analysis for Hygienic Chemists)

8. Composition
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice Peptide</td>
<td>100 %</td>
</tr>
</tbody>
</table>
This product is hydrolyzed rice (*Oryza sativa* Linne) protein with an enzyme. It guarantees minimum of 60.0 % peptide. This product is water-soluble.

1. **Appearance**
 Slightly yellow or light brown powder. Light unique smell.

2. **Peptide**
 Min. 60.0 %

3. **Loss on Drying**
 Max. 10.0 % (1g, 105°C, 2h)

4. **Purity Test**
 (1) Heavy Metals
 Max. 20 ppm (The Second method)
 (2) Arsenic
 Max. 2 ppm (The Third method)

5. **Standard Plate Counts**
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

6. **Moulds and Yeasts**
 Max. 1×10^2 cfu/g (Analysis for Hygienic Chemists)

7. **Coliforms**
 Negative (Analysis for Hygienic Chemists)

8. **Composition**
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROLYZED RICE BRAN EXTRACT</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Ref: The Japanese Standards of Quasi-Drug Ingredients.
ORYZA OIL & FAT CHEMICAL CO., LTD. striving for the development of the new functional food materials to promote health and general well-being.

From product planning to OEM - For any additional information or assistance, please contact:

ORYZA OIL & FAT CHEMICAL CO., LTD.
No.1, Numata Kitagata-cho, Ichinomiya-city, Aichi-pref.,
493-8001 JAPAN
TEL: +81 (0) 586 86 5141
FAX: +81 (0) 586 86 6191
URL/http://www.oryza.co.jp/
E-mail: info@oryza.co.jp

Tokyo Office
Daitokyo Build. 5F, 1-24-10, Suda-cho, Kanda, Chiyoda-ku, Tokyo, 101-0041 Japan
TEL: +81 (0) 3 5209 9150
FAX: +81 (0) 3 5209 9151
E-mail: Tokyo@oryza.co.jp

*The unapproved copy of this catalogue and appropriation are forbidden except for the exception on the Copyright Act.
*The contents of this catalogue may be changed without prior notice.

Established Date: January 21, 2010